A Discrete Particle Swarm for Multi-objective Problems in Polynomial Neural Networks used for Classification: A Data Mining Perspective

Author(s):  
Satchidananda Dehuri ◽  
Carlos A. Coello Coello ◽  
Sung-Bae Cho ◽  
Ashish Ghosh
Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2211
Author(s):  
Na Wei ◽  
Mingyong Liu ◽  
Weibin Cheng

This paper proposes a multi-objective decision-making model for underwater countermeasures based on a multi-objective decision theory and solves it using the multi-objective discrete particle swarm optimization (MODPSO) algorithm. Existing decision-making models are based on fully allocated assignment without considering the weapon consumption and communication delay, which does not conform to the actual naval combat process. The minimum opponent residual threat probability and minimum own-weapon consumption are selected as two functions of the multi-objective decision-making model in this paper. Considering the impact of the communication delay, the multi-objective discrete particle swarm optimization (MODPSO) algorithm is proposed to obtain the optimal solution of the distribution scheme with different weapon consumptions. The algorithm adopts the natural number coding method, and the particle corresponds to the confrontation strategy. The simulation result shows that underwater communication delay impacts the decision-making selection. It verifies the effectiveness of the proposed model and the proposed multi-objective discrete particle swarm optimization algorithm.


2017 ◽  
Vol 24 (s3) ◽  
pp. 79-85
Author(s):  
Lingjie Zhang ◽  
Jianbo Sun ◽  
Chen Guo

Abstract A novel multi-objective discrete particle swarm optimization with elitist perturbation strategy (EPSMODPSO) is proposed and applied to solve the reconfiguration problem of shipboard power system(SPS). The new algorithm uses the velocity to decide each particle to move one step toward positive or negative direction to update the position. An elitist perturbation strategy is proposed to improve the local search ability of the algorithm. Reconfiguration model of SPS is established with multiple objectives, and an inherent homogeneity index is adopted as the auxiliary estimating index. Test results of examples show that the proposed EPSMODPSO performs excellent in terms of diversity and convergence of the obtained Pareto optimal front. It is competent to solve network reconfiguration of shipboard power system and other multi-objective discrete optimization problems.


Author(s):  
Mohd Fadzil Faisae Ab Rashid ◽  
Windo Hutabarat ◽  
Ashutosh Tiwari

In assembly optimisation, assembly sequence planning and assembly line balancing have been extensively studied because both activities are directly linked with assembly efficiency that influences the final assembly costs. Both activities are categorised as NP-hard and usually performed separately. Assembly sequence planning and assembly line balancing optimisation presents a good opportunity to be integrated, considering the benefits such as larger search space that leads to better solution quality, reduces error rate in planning and speeds up time-to-market for a product. In order to optimise an integrated assembly sequence planning and assembly line balancing, this work proposes a multi-objective discrete particle swarm optimisation algorithm that used discrete procedures to update its position and velocity in finding Pareto optimal solution. A computational experiment with 51 test problems at different difficulty levels was used to test the multi-objective discrete particle swarm optimisation performance compared with the existing algorithms. A statistical test of the algorithm performance indicates that the proposed multi-objective discrete particle swarm optimisation algorithm presents significant improvement in terms of the quality of the solution set towards the Pareto optimal set.


Sign in / Sign up

Export Citation Format

Share Document