scholarly journals A Method to Correct for Brain Shift When Building Electrophysiological Atlases for Deep Brain Stimulation (DBS) Surgery

Author(s):  
Srivatsan Pallavaram ◽  
Benoit M. Dawant ◽  
Rui Li ◽  
Joseph S. Neimat ◽  
Michael S. Remple ◽  
...  
2007 ◽  
Vol 107 (5) ◽  
pp. 989-997 ◽  
Author(s):  
Yasushi Miyagi ◽  
Fumio Shima ◽  
Tomio Sasaki

Object The goal of this study was to focus on the tendency of brain shift during stereotactic neurosurgery and the shift's impact on the unilateral and bilateral implantation of electrodes for deep brain stimulation (DBS). Methods Eight unilateral and 10 bilateral DBS electrodes at 10 nuclei ventrales intermedii and 18 subthalamic nuclei were implanted in patients at Kaizuka Hospital with the aid of magnetic resonance (MR) imaging–guided and microelectrode-guided methods. Brain shift was assessed as changes in the 3D coordinates of the anterior and posterior commissures (AC and PC) with MR images before and immediately after the implantation surgery. The positions of the implanted electrodes, based on the midcommissural point and AC–PC line, were measured both on x-ray films (virtual position) during surgery and the postoperative MR images (actual position) obtained on the 7th day postoperatively. Results Contralateral and posterior shift of the AC and PC were the characteristics of unilateral and bilateral procedures, respectively. The authors suggest the following. 1) The first unilateral procedure elicits a unilateral air invasion, resulting in a contralateral brain shift. 2) During the second procedure in the bilateral surgery, the contralateral shift is reset to the midline and, at the same time, the anteroposterior support by the contralateral hemisphere against gravity is lost due to a bilateral air invasion, resulting in a significant posterior (caudal) shift. Conclusions To note the tendency of the brain to shift is very important for accurate implantation of a DBS electrode or high frequency thermocoagulation, as well as for the prediction of therapeutic and adverse effects of stereotactic surgery.


2016 ◽  
Vol 124 (1) ◽  
pp. 62-69 ◽  
Author(s):  
Zhiqiang Cui ◽  
Longsheng Pan ◽  
Huifang Song ◽  
Xin Xu ◽  
Bainan Xu ◽  
...  

OBJECT The degree of clinical improvement achieved by deep brain stimulation (DBS) is largely dependent on the accuracy of lead placement. This study reports on the evaluation of intraoperative MRI (iMRI) for adjusting deviated electrodes to the accurate anatomical position during DBS surgery and acute intracranial changes. METHODS Two hundred and six DBS electrodes were implanted in the subthalamic nucleus (STN) in 110 patients with Parkinson disease. All patients underwent iMRI after implantation to define the accuracy of lead placement. Fifty-six DBS electrode positions in 35 patients deviated from the center of the STN, according to the result of the initial postplacement iMRI scans. Thus, we adjusted the electrode positions for placement in the center of the STN and verified this by means of second or third iMRI scans. Recording was performed in adjusted parameters in the x-, y-, and z-axes. RESULTS Fifty-six (27%) of 206 DBS electrodes were adjusted as guided by iMRI. Electrode position was adjusted on the basis of iMRI 62 times. The sum of target coordinate adjustment was −0.5 mm in the x-axis, −4 mm in the y-axis, and 15.5 mm in the z-axis; the total of distance adjustment was 74.5 mm in the x-axis, 88 mm in the y-axis, and 42.5 mm in the z-axis. After adjustment with the help of iMRI, all electrodes were located in the center of the STN. Intraoperative MRI revealed 2 intraparenchymal hemorrhages in 2 patients, brain shift in all patients, and leads penetrating the lateral ventricle in 3 patients. CONCLUSIONS The iMRI technique can guide surgeons as they adjust deviated electrodes to improve the accuracy of implanting the electrodes into the correct anatomical position. The iMRI technique can also immediately demonstrate acute changes such as hemorrhage and brain shift during DBS surgery.


Author(s):  
Srivatsan Pallavaram ◽  
Benoit M. Dawant ◽  
Michael S. Remple ◽  
Joseph S. Neimat ◽  
Chris Kao ◽  
...  

2007 ◽  
Vol 86 (1) ◽  
pp. 44-53 ◽  
Author(s):  
Muhammad Faisal Khan ◽  
Klaus Mewes ◽  
Robert E. Gross ◽  
Oskar Škrinjar

2011 ◽  
Vol 115 (4) ◽  
pp. 852-857 ◽  
Author(s):  
Olivia O. Huston ◽  
Robert E. Watson ◽  
Matt A. Bernstein ◽  
Kiaran P. McGee ◽  
S. Matt Stead ◽  
...  

Object Deep brain stimulation (DBS) is an established neurosurgical technique used to treat a variety of neurological disorders, including Parkinson disease, essential tremor, dystonia, epilepsy, depression, and obsessive-compulsive disorder. This study reports on the use of intraoperative MR imaging during DBS surgery to evaluate acute hemorrhage, intracranial air, brain shift, and accuracy of lead placement. Methods During a 46-month period, 143 patients underwent 152 DBS surgeries including 289 lead placements utilizing intraoperative 1.5-T MR imaging. Imaging was supervised by an MR imaging physicist to maintain the specific absorption rate below the required level of 0.1 W/kg and always included T1 magnetization-prepared rapid gradient echo and T2* gradient echo sequences with selected use of T2 fluid attenuated inversion recovery (FLAIR) and T2 fast spin echo (FSE). Retrospective review of the intraoperative MR imaging examinations was performed to quantify the amount of hemorrhage and the amount of air introduced during the DBS surgery. Results Intraoperative MR imaging revealed 5 subdural hematomas, 3 subarachnoid hemorrhages, and 1 intraparenchymal hemorrhage in 9 of the 143 patients. Only 1 patient experiencing a subarachnoid hemorrhage developed clinically apparent symptoms, which included transient severe headache and mild confusion. Brain shift due to intracranial air was identified in 144 separate instances. Conclusions Intraoperative MR imaging can be safely performed and may assist in demonstrating acute changes involving intracranial hemorrhage and air during DBS surgery. These findings are rarely clinically significant and typically resolve prior to follow-up imaging. Selective use of T2 FLAIR and T2 FSE imaging can confirm the presence of hemorrhage or air and preclude the need for CT examinations.


2011 ◽  
Vol 17 (5) ◽  
pp. 393-394 ◽  
Author(s):  
Stéphane Derrey ◽  
Romain Lefaucheur ◽  
François Proust ◽  
Nathalie Chastan ◽  
Sophie Lévèque ◽  
...  

2020 ◽  
Vol 67 (12) ◽  
pp. 3542-3552
Author(s):  
Chen Li ◽  
Xiaoyao Fan ◽  
Jennifer Hong ◽  
David W. Roberts ◽  
Joshua P. Aronson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document