A Code Generator for Distributing Sensor Data Models

Author(s):  
Urs Hunkeler ◽  
Paolo Scotton
Author(s):  
Hemant Ghayvat ◽  
Prosanta Gope

AbstractReasoning weakening because of dementia degrades the performance in activities of daily living (ADL). Present research work distinguishes care needs, dangers and monitors the effect of dementia on an individual. This research contrasts in ADL design execution between dementia-affected people and other healthy elderly with heterogeneous sensors. More than 300,000 sensors associated activation data were collected from the dementia patients and healthy controls with wellness sensors networks. Generated ADLs were envisioned and understood through the activity maps, diversity and other wellness parameters to categorize wellness healthy, and dementia affected the elderly. Diversity was significant between diseased and healthy subjects. Heterogeneous unobtrusive sensor data evaluate behavioral patterns associated with ADL, helpful to reveal the impact of cognitive degradation, to measure ADL variation throughout dementia. The primary focus of activity recognition in the current research is to transfer dementia subject occupied homes models to generalized age-matched healthy subject data models to utilize new services, label classified datasets and produce limited datasets due to less training. Current research proposes a novel Smart Aging Monitoring and Early Dementia Recognition system that provides the exchange of data models between dementia subject occupied homes (DSOH) to healthy subject occupied homes (HSOH) in a move to resolve the deficiency of training data. At that point, the key attributes are mapped onto each other utilizing a sensor data fusion that assures to retain the diversities between various HSOH & DSOH by diminishing the divergence between them. Moreover, additional tests have been conducted to quantify the excellence of the offered framework: primary, in contradiction of the precision of feature mapping techniques; next, computing the merit of categorizing data at DSOH; and, the last, the aptitude of the projected structure to function thriving due to noise data. The outcomes show encouraging pointers and highlight the boundaries of the projected approach.


Author(s):  
M. Scheffer ◽  
M. Konig ◽  
T. Engelmann ◽  
L. C. Tagliabue ◽  
A. L. C. Ciribini ◽  
...  
Keyword(s):  

Author(s):  
L Teppati Losè ◽  
G Sammartano ◽  
F Chiabrando ◽  
A Spanò
Keyword(s):  

Author(s):  
Mohsen Asghari ◽  
Daniel Sierra-Sosa ◽  
Michael Telahun ◽  
Anup Kumar ◽  
Adel S. Elmaghraby

2009 ◽  
Author(s):  
Bradley M. Davis ◽  
Woodrow W. Winchester ◽  
Jason D. Zedlitz
Keyword(s):  

2018 ◽  
Vol 18 (1) ◽  
pp. 20-32 ◽  
Author(s):  
Jong-Min Kim ◽  
Jaiwook Baik

2020 ◽  
Vol 20 (4) ◽  
pp. 332-342
Author(s):  
Hyung Jun Park ◽  
Seong Hee Cho ◽  
Kyung-Hwan Jang ◽  
Jin-Woon Seol ◽  
Byung-Gi Kwon ◽  
...  

2020 ◽  
Vol 2020 (1) ◽  
pp. 91-95
Author(s):  
Philipp Backes ◽  
Jan Fröhlich

Non-regular sampling is a well-known method to avoid aliasing in digital images. However, the vast majority of single sensor cameras use regular organized color filter arrays (CFAs), that require an optical-lowpass filter (OLPF) and sophisticated demosaicing algorithms to suppress sampling errors. In this paper a variety of non-regular sampling patterns are evaluated, and a new universal demosaicing algorithm based on the frequency selective reconstruction is presented. By simulating such sensors it is shown that images acquired with non-regular CFAs and no OLPF can lead to a similar image quality compared to their filtered and regular sampled counterparts. The MATLAB source code and results are available at: http://github. com/PhilippBackes/dFSR


2018 ◽  
Vol 6 (1) ◽  
pp. 93-101
Author(s):  
Hyun Ki Kim ◽  
Chan Yong Choi ◽  
Ho Suk Bae

Sign in / Sign up

Export Citation Format

Share Document