color filter
Recently Published Documents


TOTAL DOCUMENTS

938
(FIVE YEARS 171)

H-INDEX

39
(FIVE YEARS 5)

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 101
Author(s):  
Fu-Ming Tzu ◽  
Shih-Hsien Hsu ◽  
Jung-Shun Chen

This paper describes the non-contact optical detection of debris material that adheres to the substrates of color filters (CFs) and thin-film transistors (TFTs) by area charge-coupled devices (CCDs) and laser sensors. One of the optical detections is a side-view illumination by an area CCD that emits a coherency light to detect debris on the CF. In contrast to the height of the debris material, the image is acquired by transforming the geometric shape from a square to a circle. As a result, the side-view illumination from the area CCD identified the height of the debris adhered to the black matrix (BM) as well as the red, green, and blue of a CF with 95, 97, 98, and 99% accuracy compared to the golden sample. The uncertainty analysis was at 5% for the BM, 3% for the red, 2% for the green, and 1% for the blue. The other optical detection, a laser optical interception with a horizontal alignment, inspected the material foreign to the TFT. At the same time, laser sensors intercepted the debris on the TFT at a voltage of 3.5 V, which the five sets of laser optics make scanning the sample. Consequently, the scanning rate reached over 98% accuracy, and the uncertainty analysis was within 5%. Thus, both non-contact optical methods can detect debris at a 50 μm height or lower. The experiment presents a successful design for the efficient prevention of a valuable component malfunction.


2022 ◽  
pp. 2111409
Author(s):  
Woosik Kim ◽  
Su‐Kyung Kim ◽  
Sanghyun Jeon ◽  
Junhyuk Ahn ◽  
Byung Ku Jung ◽  
...  

2021 ◽  
Author(s):  
N. Roostaei ◽  
S. M. Hamidi

Abstract Color blindness, or color vision deficiency (CVD), is an ocular disease that suppresses the recognition of different colors. Recently, tinted glasses and lenses have been studied as hopeful devices for color blindness correction. In this study, 2D biocompatible and flexible plasmonic lenses were fabricated using polydimethylsiloxane (PDMS) and an innovative, low-cost, and simple design based on the soft nano-lithography method. These lenses were investigated for correction of red-green (deuteranomaly) color blindness. The plasmonic lens proposed herein is based on the plasmonic surface lattice resonance (SLR) phenomenon and offers a good color filter for color blindness correction. The biocompatibility, low cost, and simple fabrication of these contact lenses can offer new insights for applications of color blindness correction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jyotindra R. Shakya ◽  
Farzana H. Shashi ◽  
Alan X. Wang

AbstractCompared with traditional Fabry–Perot optical filters, plasmonic color filters could greatly remedy the complexity and reduce the cost of manufacturing. In this paper we present end-to-end demonstration of visible light spectroscopy based on highly selective plasmonic color filter array based on resonant grating structure. The spectra of 6 assorted samples were measured using an array of 20 narrowband color filters and detected signals were used to reconstruct original spectra by using new unmixing algorithm and by solving least squares problem with smoothing regularization. The original spectra were reconstructed with less than 0.137 root mean squared error. This works shows promise towards fully integrating plasmonic color filter array in imagers used in hyperspectral cameras.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuan-Fong Chou Chau ◽  
Chung-Ting Chou Chao ◽  
Hung Ji Huang ◽  
Sy-Hann Chen ◽  
Tsung Sheng Kao ◽  
...  

AbstractThis paper reports a multichannel color filter with the functions of optical sensor and switch. The proposed structure comprises a metal–insulator–metal (MIM) bus waveguide side-couples to six circular cavities with different sizes for filtering ultra-violet and visible lights into individual colors in the wavelength range of 350–700 nm. We used the finite element method to analyze the electromagnetic field distributions and transmittance properties by varying the structural parameters in detail. The designed plasmonic filter takes advantage of filtering out different colors since the light-matter resonance and interference between the surface plasmon polaritons (SPPs) modes within the six cavities. Results show that the designed structure can preferentially select the desired colors and confine the SPPS modes in one of the cavities. This designed structure can filter eleven color channels with a small full width at half maximum (FWHM) ~ 2 nm. Furthermore, the maximum values of sensitivity, figure of merit, quality factor, dipping strength, and extinction ratio can achieve of 700 nm/RIU, 350 1/RIU, 349.0, 65.04%, and 174.50 dB, respectively, revealing the excellent functions of sensor performance and optical switch, and offering a chance for designing a beneficial nanophotonic device.


2021 ◽  
Vol 2021 (29) ◽  
pp. 1-6
Author(s):  
Yuteng Zhu ◽  
Graham D. Finlayson

Previously improved color accuracy of a given digital camera was achieved by carefully designing the spectral transmittance of a color filter to be placed in front of the camera. Specifically, the filter is designed in a way that the spectral sensitivities of the camera after filtering are approximately linearly related to the color matching functions (or tristimulus values) of the human visual system. To avoid filters that absorbed too much light, the optimization could incorporate a minimum per wavelength transmittance constraint. In this paper, we change the optimization so that the overall filter transmittance is bounded, i.e. we solve for the filter that (for a uniform white light) transmits (say) 50% of the light. Experiments demonstrate that these filters continue to solve the color correction problem (they make cameras much more colorimetric). Significantly, the optimal filters by restraining the average transmittance can deliver a further 10% improvement in terms of color accuracy compared to the prior art of bounding the low transmittance.


2021 ◽  
Vol 11 (21) ◽  
pp. 9975
Author(s):  
Francesco de Gioia ◽  
Luca Fanucci

Modern digital cameras use specific arrangement of Color Filter Array to sample light wavelength corresponding to visible colors. The most common Color Filter Array is the Bayer filter that samples only one color per pixel. To recover the full resolution image, an interpolation algorithm can be used. This process is called demosaicing and it is one of the first processing stages of a digital imaging pipeline. We introduce a novel data-driven model for demosaicing that takes into account the different requirements for reconstruction of the image Luma and Chrominance channels. The final model is a parallel composition of two reconstruction networks with individual architecture and trained with distinct loss functions. In order to solve the overfitting problem, we prepared a dataset that contains groups of patches that share common chromatic and spectral characteristics. We reported the reconstruction error on noise-free images and measured the effect of random noise and quantization noise in the demosaicing reconstruction. To test our model performance, we implemented the network on NVIDIA Jetson Nano, obtaining an end-to-end running time of less than one second for a full frame 12 MPixel image.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2813
Author(s):  
Xiaochuan Chen ◽  
Pengxia Liang ◽  
Qian Wu ◽  
Qiaofeng Tan ◽  
Xue Dong

Conventional color filters selectively absorb a part of the backlight while reflecting or transmitting other light, resulting in the problem of low efficiency and energy wasting. For this problem, a new concept of fluorescence enhanced optical resonator was proposed and verified in this paper. The new structure consists of structural color filter and light-conversion material. Specially, a thin film resonant cavity was designed, and InP/ZnSe/ZnS quantum dots were inserted inside the resonator. When illuminated by sunlight, the novel fluorescence enhanced optical resonator could not only reflect the specific light, but also convert absorbed energy into desired light, leading to the utilization efficiency improvement of solar energy. An all-dielectric red fluorescence enhanced optical resonator was fabricated, with peak equivalent reflectance up to 105%. Compared with a thin film resonator, the enhancement coefficient of the as-proposed structure is about 124%. The new optical structure can utilize solar source efficiently, showing application potential as the next generation of reflective color filters for display.


2021 ◽  
Author(s):  
Isa Maria Paiva ◽  
Sean Siqueira ◽  
Simone Bacellar Leal Ferreira

Author(s):  
Wilfred Gee ◽  
Olivier Guyon ◽  
Nemanja Jovanovic ◽  
Christian Schwab ◽  
David Coutts ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document