scholarly journals Hierarchical Place Trees: A Portable Abstraction for Task Parallelism and Data Movement

Author(s):  
Yonghong Yan ◽  
Jisheng Zhao ◽  
Yi Guo ◽  
Vivek Sarkar
Author(s):  
Jack Dongarra ◽  
Laura Grigori ◽  
Nicholas J. Higham

A number of features of today’s high-performance computers make it challenging to exploit these machines fully for computational science. These include increasing core counts but stagnant clock frequencies; the high cost of data movement; use of accelerators (GPUs, FPGAs, coprocessors), making architectures increasingly heterogeneous; and multi- ple precisions of floating-point arithmetic, including half-precision. Moreover, as well as maximizing speed and accuracy, minimizing energy consumption is an important criterion. New generations of algorithms are needed to tackle these challenges. We discuss some approaches that we can take to develop numerical algorithms for high-performance computational science, with a view to exploiting the next generation of supercomputers. This article is part of a discussion meeting issue ‘Numerical algorithms for high-performance computational science’.


Systems ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 6
Author(s):  
Allen D. Parks ◽  
David J. Marchette

The Müller-Wichards model (MW) is an algebraic method that quantitatively estimates the performance of sequential and/or parallel computer applications. Because of category theory’s expressive power and mathematical precision, a category theoretic reformulation of MW, i.e., CMW, is presented in this paper. The CMW is effectively numerically equivalent to MW and can be used to estimate the performance of any system that can be represented as numerical sequences of arithmetic, data movement, and delay processes. The CMW fundamental symmetry group is introduced and CMW’s category theoretic formalism is used to facilitate the identification of associated model invariants. The formalism also yields a natural approach to dividing systems into subsystems in a manner that preserves performance. Closed form models are developed and studied statistically, and special case closed form models are used to abstractly quantify the effect of parallelization upon processing time vs. loading, as well as to establish a system performance stationary action principle.


2016 ◽  
Vol 12 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Stephanie N. Jones ◽  
Ahmed Amer ◽  
Ethan L. Miller ◽  
Darrell D. E. Long ◽  
Rekha Pitchumani ◽  
...  
Keyword(s):  

Author(s):  
Isaac Sánchez Barrera ◽  
Miquel Moretó ◽  
Eduard Ayguadé ◽  
Jesús Labarta ◽  
Mateo Valero ◽  
...  

Author(s):  
Daqi Lin ◽  
Elena Vasiou ◽  
Cem Yuksel ◽  
Daniel Kopta ◽  
Erik Brunvand

Bounding volume hierarchies (BVH) are the most widely used acceleration structures for ray tracing due to their high construction and traversal performance. However, the bounding planes shared between parent and children bounding boxes is an inherent storage redundancy that limits further improvement in performance due to the memory cost of reading these redundant planes. Dual-split trees can create identical space partitioning as BVHs, but in a compact form using less memory by eliminating the redundancies of the BVH structure representation. This reduction in memory storage and data movement translates to faster ray traversal and better energy efficiency. Yet, the performance benefits of dual-split trees are undermined by the processing required to extract the necessary information from their compact representation. This involves bit manipulations and branching instructions which are inefficient in software. We introduce hardware acceleration for dual-split trees and show that the performance advantages over BVHs are emphasized in a hardware ray tracing context that can take advantage of such acceleration. We provide details on how the operations needed for decoding dual-split tree nodes can be implemented in hardware and present experiments in a number of scenes with different sizes using path tracing. In our experiments, we have observed up to 31% reduction in render time and 38% energy saving using dual-split trees as compared to binary BVHs representing identical space partitioning.


Sign in / Sign up

Export Citation Format

Share Document