Hardware-Accelerated Dual-Split Trees

Author(s):  
Daqi Lin ◽  
Elena Vasiou ◽  
Cem Yuksel ◽  
Daniel Kopta ◽  
Erik Brunvand

Bounding volume hierarchies (BVH) are the most widely used acceleration structures for ray tracing due to their high construction and traversal performance. However, the bounding planes shared between parent and children bounding boxes is an inherent storage redundancy that limits further improvement in performance due to the memory cost of reading these redundant planes. Dual-split trees can create identical space partitioning as BVHs, but in a compact form using less memory by eliminating the redundancies of the BVH structure representation. This reduction in memory storage and data movement translates to faster ray traversal and better energy efficiency. Yet, the performance benefits of dual-split trees are undermined by the processing required to extract the necessary information from their compact representation. This involves bit manipulations and branching instructions which are inefficient in software. We introduce hardware acceleration for dual-split trees and show that the performance advantages over BVHs are emphasized in a hardware ray tracing context that can take advantage of such acceleration. We provide details on how the operations needed for decoding dual-split tree nodes can be implemented in hardware and present experiments in a number of scenes with different sizes using path tracing. In our experiments, we have observed up to 31% reduction in render time and 38% energy saving using dual-split trees as compared to binary BVHs representing identical space partitioning.

Author(s):  
Ingo Wald ◽  
Nate Morrical ◽  
Stefan Zellmann ◽  
Lei Ma ◽  
Will Usher ◽  
...  

With the recent addition of hardware ray tracing capabilities, GPUs have become incredibly efficient at ray tracing both triangular geometry, and instances thereof. However, the bounding volume hierarchies that current ray tracing hardware relies on are known to struggle with long, thin primitives like cylinders and curves, because the axis-aligned bounding boxes that these hierarchies rely on cannot tightly bound such primitives. In this paper, we evaluate the use of RTX ray tracing capabilities to accelerate these primitives by tricking the GPU's instancing units into executing a hardware-accelerated oriented bounding box (OBB) rejection test before calling the user's intersection program. We show that this can be done with minimal changes to the intersection programs and demonstrate speedups of up to 5.9× on a variety of data sets.


2021 ◽  
Vol 40 (2) ◽  
pp. 683-712
Author(s):  
Daniel Meister ◽  
Shinji Ogaki ◽  
Carsten Benthin ◽  
Michael J. Doyle ◽  
Michael Guthe ◽  
...  

2016 ◽  
Vol 27 (3-4) ◽  
pp. 358-368 ◽  
Author(s):  
Ulises Olivares ◽  
Héctor G. Rodríguez ◽  
Arturo García ◽  
Félix F. Ramos

Author(s):  
Jorge R. Martins ◽  
Vasco S. Costa ◽  
João M. Pereira

Rendering human hair can be a hard task because of the required high super-sampling rate to render thin hair fibers without noticeable aliasing. Additionally, the current state-of-the-art bounding volume hierarchies (BVHs) are not suitable to hair rendering. In fact, the axis-aligned bounding boxes (AABBs) do not tightly bind hair primitives which impacts negatively the intersection tests activity. Both limitations can degrade severely the rendering performance so described in this article, a cone tracing GPU approach coupled with a hybrid bounding volume hierarchy to tackle these problems. The hybrid BVH makes use of both oriented and axis aligned bounding boxes. It is shown that the experiment is able to drastically reduce the super-sampling required to produce aliasing free images while minimizing the number of intersection tests and achieving speedups of up to 4, depending on the scene.


2007 ◽  
Vol 26 (1) ◽  
pp. 6 ◽  
Author(s):  
Ingo Wald ◽  
Solomon Boulos ◽  
Peter Shirley

2020 ◽  
pp. short56-1-short56-8
Author(s):  
Vadim Bulavintsev ◽  
Dmitry Zhdanov

With every new generation of graphics processing units (GPUs), offloading ray-tracing algorithms to GPUs becomes more feasible. Software-hardware solutions for ray-tracing focus on implementing its basic components, such as building and traversing bounding volume hierarchies (BVH). However, global illumination algorithms, such as photon mapping method, depend on another kind of acceleration structure, namely k-d trees. In this work, we adapt state-ofthe-art GPU-based BVH-building algorithm of treelet restructuring to k-d trees. By evaluating the performance of the resulting k-d tree, we show that treelet optimisation heuristic suitable for BVHs of triangles is inadequate for k-d trees of points.


Author(s):  
Timo Viitanen ◽  
Matias Koskela ◽  
Pekka Jääskeläinen ◽  
Jarmo Takala

Sign in / Sign up

Export Citation Format

Share Document