Anthroscape of the Mediterranean Coastal Area in the Context of Hydrogeology: Projected Impacts of Climate Change

2010 ◽  
pp. 311-332 ◽  
Author(s):  
Katsuyuki Fujinawa
Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 56
Author(s):  
Helder Fraga ◽  
Marco Moriondo ◽  
Luisa Leolini ◽  
João A. Santos

The olive tree (Olea europaea L.) is an ancient traditional crop in the Mediterranean Basin. In the Mediterranean region, traditional olive orchards are distinguishable by their prevailing climatic conditions. Olive trees are indeed considered one of the most suitable and best-adapted species to the Mediterranean-type climate. However, new challenges are predicted to arise from climate change, threatening this traditional crop. The Mediterranean Basin is considered a climate change “hotspot,” as future projections hint at considerable warming and drying trends. Changes in olive tree suitability have already been reported over the last few decades. In this context, climate change may become particularly challenging for olive growers. The growing evidence for significant climate change in the upcoming decades urges adaptation measures to be taken. To effectively cope with the projected changes, both short and long-term adaptation strategies must be timely planned by the sector stakeholders and decision-makers to adapt for a warmer and dryer future. The current manuscript is devoted to illustrating the main impacts of climate change on olive tree cultivation in the Mediterranean Basin, by reviewing the most recent studies on this subject. Additionally, an analysis of possible adaptation strategies against the potentially negative impacts of climate change was also performed.


2020 ◽  
Author(s):  
Manfred A. Lange

<p>The region of the Middle East and North Africa (MENA region) encompasses countries of the eastern Mediterranean, the Middle East, and North Africa, from Morocco in the West to the Islamic Republic of Iran in the East and from the Syrian Arab Republic in the North to the Republic of Yemen in the South. It is home to some 500 million inhabitants and is characterized by widely varied political and economic settings and a rich cultural heritage. Stark environmental gradients, as well as significant differences in the provision of ecosystem services, both East to West and South to North, are typical for the MENA Region.</p><p>Climate changes in the Mediterranean Basin, in general, and in the MENA countries, in particular, currently exceed global mean values significantly. Numerical model results indicate that this trend will continue in the near future and imply that the number of extreme summer temperatures and heatwaves may increase significantly over the coming decades. At the same time, a decrease in precipitation and a significantly longer dry season for most MENA countries than at present are anticipated. This leads to a significantly increased demand for water and energy. In addition, other factors further exacerbate these demands in the MENA, including the general economic development, extreme population growth and increasing urbanization, changes in lifestyle, shifting consumption patterns, inefficiencies in the use of resources that result from technical and managerial inadequacies and energy and water subsidies in several countries of the region to name but a few.</p><p>The impacts of climate change will be particularly severe in urban settings and large cities of the Mediterranean Basin and the MENA region. Cities will see an enhanced heat accumulation compared to the surrounding rural land due to heat-build-up in buildings, transportation infrastructure, and enhanced human activities. Reduced ventilation within cities exacerbates the warming, particularly during summer heatwaves. Consequently, additional, energy-intensive space cooling will be needed in order to maintain acceptable indoor conditions. With regard to water scarcity, the aforementioned decreases in precipitation will reduce available drinking water for city inhabitants and green spaces. This requires the provision of unconventional water sources, e.g., through desalination, which requires significant quantities of energy. Overall, climate change will exacerbate resource demand for water and energy, in general, and in urban settings, in particular.</p><p>However, the provision of water and energy are interrelated. In order to maintain water and energy security in the MENA region, these issues need therefore be considered holistically in the framework of the Water-Energy-Nexus (WEN).</p><p>The present paper aims to elucidate some of the interrelationships between water and energy resources and their provision and will briefly outline a few of the possible mitigation/adaptation options/strategies to reduce adverse impacts of climate change on the MENA region and its inhabitants.</p>


2015 ◽  
Vol 11 (3) ◽  
pp. 455-476 ◽  
Author(s):  
Jonathan Rizzi ◽  
Valentina Gallina ◽  
Silvia Torresan ◽  
Andrea Critto ◽  
Slim Gana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document