SFS: A Secure File System with Scalability and Reliability Features on Distributed Storage Devices

Author(s):  
Feng Shen ◽  
Hai Jiang
Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 847
Author(s):  
Sopanhapich Chum ◽  
Heekwon Park ◽  
Jongmoo Choi

This paper proposes a new resource management scheme that supports SLA (Service-Level Agreement) in a bigdata distributed storage system. Basically, it makes use of two mapping modes, isolated mode and shared mode, in an adaptive manner. In specific, to ensure different QoS (Quality of Service) requirements among clients, it isolates storage devices so that urgent clients are not interfered by normal clients. When there is no urgent client, it switches to the shared mode so that normal clients can access all storage devices, thus achieving full performance. To provide this adaptability effectively, it devises two techniques, called logical cluster and normal inclusion. In addition, this paper explores how to exploit heterogeneous storage devices, HDDs (Hard Disk Drives) and SSDs (Solid State Drives), to support SLA. It examines two use cases and observes that separating data and metadata into different devices gives a positive impact on the performance per cost ratio. Real implementation-based evaluation results show that this proposal can satisfy the requirements of diverse clients and can provide better performance compared with a fixed mapping-based scheme.


2021 ◽  
Vol 12 (2) ◽  
pp. 107-112
Author(s):  
I. E. Kharlampenkov ◽  
◽  
A. U. Oshchepkov ◽  

The article presents methods for caching and displaying data from spectral satellite images using libraries of distributed computing systems that are part of the Apache Hadoop ecosystem, and GeoServer extensions. The authors gave a brief overview of existing tools that provide the ability to present remote sensing data using distributed information technologies. A distinctive feature is the way to convert remote sensing data inside Apache Parquet files for further display. This approach allows you to interact with the distributed file system via the Kite SDK libraries and switch on additional data processors based on Apache Hadoop technology as external services. A comparative analysis of existing tools, such as: GeoMesa, GeoWawe, etc is performed. The following steps are described: extracting data from Apache Parquet via the Kite SDK, converting this data to GDAL Dataset, iterating the received data, and saving it inside the file system in BIL format. In this article, the BIL format is used for the GeoServer cache. The extension was implemented and published under the Apache License on the GitHub resource. In conclusion, you will find instructions for installing and using the created extension.


2021 ◽  
Author(s):  
Sandeep Kumar ◽  
Smruti R. Sarangi

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 512 ◽  
Author(s):  
Nayeem Chowdhury ◽  
Fabrizio Pilo ◽  
Giuditta Pisano

Energy storage systems can improve the uncertainty and variability related to renewable energy sources such as wind and solar create in power systems. Aside from applications such as frequency regulation, time-based arbitrage, or the provision of the reserve, where the placement of storage devices is not particularly significant, distributed storage could also be used to improve congestions in the distribution networks. In such cases, the optimal placement of this distributed storage is vital for making a cost-effective investment. Furthermore, the now reached massive spread of distributed renewable energy resources in distribution systems, intrinsically uncertain and non-programmable, together with the new trends in the electric demand, often unpredictable, require a paradigm change in grid planning for properly lead with the uncertainty sources and the distribution system operators (DSO) should learn to support such change. This paper considers the DSO perspective by proposing a methodology for energy storage placement in the distribution networks in which robust optimization accommodates system uncertainty. The proposed method calls for the use of a multi-period convex AC-optimal power flow (AC-OPF), ensuring a reliable planning solution. Wind, photovoltaic (PV), and load uncertainties are modeled as symmetric and bounded variables with the flexibility to modulate the robustness of the model. A case study based on real distribution network information allows the illustration and discussion of the properties of the model. An important observation is that the method enables the system operator to integrate energy storage devices by fine-tuning the level of robustness it willing to consider, and that is incremental with the level of protection. However, the algorithm grows more complex as the system robustness increases and, thus, it requires higher computational effort.


2008 ◽  
Vol 2 (6) ◽  
pp. 461 ◽  
Author(s):  
C. Pedraza ◽  
J. Castillo ◽  
J.I. Martínez ◽  
P. Huerta ◽  
C.S. de La Lama

Sign in / Sign up

Export Citation Format

Share Document