Constraint-Based Clustering of Image Search Results Using Photo Metadata and Low-Level Image Features

Author(s):  
Masaharu Hirota ◽  
Shohei Yokoyama ◽  
Naoki Fukuta ◽  
Hiroshi Ishikawa
Author(s):  
Melih Soydemir ◽  
Devrim Unay

Progress in medical imaging technology together with the increasing demand for confirming a diagnostic decision with objective, repeatable, and reliable measures for improved healthcare have multiplied the number of digital medical images that need to be processed, stored, managed, and searched. Comparison of multiple patients, their pathologies, and progresses by using image search systems may largely contribute to improved diagnosis and education of medical students and residents. Supporting image content information with contextual knowledge will lead to increased reliability, robustness, and accuracy in search results. To this end, the authors present an image search system that permits search by a multitude of image features (content), and demographics, patient’s medical history, clinical data, and ontologies (context). Moreover, they validate the system’s added value in dementia diagnosis via evaluations on publicly available image databases.


Author(s):  
Siddhivinayak Kulkarni

Developments in technology and the Internet have led to an increase in number of digital images and videos. Thousands of images are added to WWW every day. Content based Image Retrieval (CBIR) system typically consists of a query example image, given by the user as an input, from which low-level image features are extracted. These low level image features are used to find images in the database which are most similar to the query image and ranked according their similarity. This chapter evaluates various CBIR techniques based on fuzzy logic and neural networks and proposes a novel fuzzy approach to classify the colour images based on their content, to pose a query in terms of natural language and fuse the queries based on neural networks for fast and efficient retrieval. A number of experiments were conducted for classification, and retrieval of images on sets of images and promising results were obtained.


Author(s):  
Anne H.H. Ngu ◽  
Jialie Shen ◽  
John Shepherd

The optimized distance-based access methods currently available for multimedia databases are based on two major assumptions: a suitable distance function is known a priori, and the dimensionality of image features is low. The standard approach to building image databases is to represent images via vectors based on low-level visual features and make retrieval based on these vectors. However, due to the large gap between the semantic notions and low-level visual content, it is extremely difficult to define a distance function that accurately captures the similarity of images as perceived by humans. Furthermore, popular dimension reduction methods suffer from either the inability to capture the nonlinear correlations among raw data or very expensive training cost. To address the problems, in this chapter we introduce a new indexing technique called Combining Multiple Visual Features (CMVF) that integrates multiple visual features to get better query effectiveness. Our approach is able to produce low-dimensional image feature vectors that include not only low-level visual properties but also high-level semantic properties. The hybrid architecture can produce feature vectors that capture the salient properties of images yet are small enough to allow the use of existing high-dimensional indexing methods to provide efficient and effective retrieval.


Author(s):  
Reinier H. van Leuken ◽  
Lluis Garcia ◽  
Ximena Olivares ◽  
Roelof van Zwol
Keyword(s):  

2014 ◽  
Vol 556-562 ◽  
pp. 4820-4824
Author(s):  
Ying Xia ◽  
Le Mi ◽  
Hae Young Bae

In study of image affective semantic classification, one problem is the low classification accuracy caused by low-level redundant features. To eliminate the redundancy, a novel image affective classification method based on attributes reduction is proposed. In this method, a decision table is built from the extraction of image features first. And then valid low-level features are determined through the feature selection process using the rough set attribute reduction algorithm. Finally, the semantic recognition is done using SVM. Experiment results show that the proposed method improves the accuracy in image affective semantic classification significantly.


Sign in / Sign up

Export Citation Format

Share Document