A Method of Image Affective Semantic Classification Based on Attribution Reduction

2014 ◽  
Vol 556-562 ◽  
pp. 4820-4824
Author(s):  
Ying Xia ◽  
Le Mi ◽  
Hae Young Bae

In study of image affective semantic classification, one problem is the low classification accuracy caused by low-level redundant features. To eliminate the redundancy, a novel image affective classification method based on attributes reduction is proposed. In this method, a decision table is built from the extraction of image features first. And then valid low-level features are determined through the feature selection process using the rough set attribute reduction algorithm. Finally, the semantic recognition is done using SVM. Experiment results show that the proposed method improves the accuracy in image affective semantic classification significantly.

2014 ◽  
Vol 533 ◽  
pp. 237-241
Author(s):  
Xiao Jing Liu ◽  
Wei Feng Du ◽  
Xiao Min

The measure of the significance of the attribute and attribute reduction is one of the core content of rough set theory. The classical rough set model based on equivalence relation, suitable for dealing with discrete-valued attributes. Fuzzy-rough set theory, integrating fuzzy set and rough set theory together, extending equivalence relation to fuzzy relation, can deal with fuzzy-valued attributes. By analyzing three problems of FRAR which is a fuzzy decision table attribute reduction algorithm having extensive use, this paper proposes a new reduction algorithm which has better overcome the problem, can handle larger fuzzy decision table. Experimental results show that our reduction algorithm is much quicker than the FRAR algorithm.


2012 ◽  
Vol 198-199 ◽  
pp. 1367-1371
Author(s):  
Hao Dong Zhu ◽  
Hong Chan Li

The classical rough set can not show the fuzziness and the importance of objects in decision procedure because it uses definite form to express each object. In order to solve this problem, this paper firstly introduces a special decision table in which each object has a membership degree to show its fuzziness and has been assigned a weight to show its importance in decision procedure. And then, the special decision table is studied and the relevant rough set model is provided. In the meantime, relevant definitions and theorems are proposed. On the above basis, an attribute reduction algorithm is presented. Finally, feasibility of the relevant rough set model and the presented attribute reduction algorithm are verified by an example.


Author(s):  
Alda Cendekia Siregar ◽  
Barry Ceasar Octariadi

Traditional fabric is a cultural heritage that has to be preserved. Kain Lunggi is Sambas traditional fabric that saw a decline in its crafter. To introduce Kain Lunggi in a broader national and global society in order to preserve it, a digital image processing based system to perform Kain Lunggi pattern recognition need to be built. Feature extraction is an important part of digital image processing. The visual feature that does not represent the character of an object will affect the accuracy of a recognition system. The purposes of this research are to perform feature selection on sets of feature to determine the best feature that can increase recognition accuracy. This research conducted in several steps which are image acquisition of Kain Lunggi pattern, preprocessing to reduce image noise, feature extraction to obtain image features, and feature selection. GLCM is implemented as a feature extraction method.  Feature extraction result will be used in a feature selection process using CFS (Correlation-based Feature Selection) methods. Selected features from CFS process are Angular Second Moment, Contrast, and Correlation. Selected features evaluation is conducted by calculating classification accuracy with the KNN method. Classification accuracy prior to feature extraction is 85.18% with K values K=1 ; meanwhile, the accuracy increases to 88.89% after feature selection. The highest accuracy improvement of 20.74% in KNN occurred when using K value K= 4.


Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1470
Author(s):  
Guobao Zhao ◽  
Haiying Wang ◽  
Deli Jia ◽  
Quanbin Wang

Considering the crucial influence of feature selection on data classification accuracy, a grey wolf optimizer based on quantum computing and uncertain symmetry rough set (QCGWORS) was proposed. QCGWORS was to apply a parallel of three theories to feature selection, and each of them owned the unique advantages of optimizing feature selection algorithm. Quantum computing had a good balance ability when exploring feature sets between global and local searches. Grey wolf optimizer could effectively explore all possible feature subsets, and uncertain symmetry rough set theory could accurately evaluate the correlation of potential feature subsets. QCGWORS intelligent algorithm could minimize the number of features while maximizing classification performance. In the experimental stage, k nearest neighbors (KNN) classifier and random forest (RF) classifier guided the machine learning process of the proposed algorithm, and 13 datasets were compared for testing experiments. Experimental results showed that compared with other feature selection methods, QCGWORS improved the classification accuracy on 12 datasets, among which the best accuracy was increased by 20.91%. In attribute reduction, each dataset had a benefit of the reduction effect of the minimum feature number.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Dongyan Cui ◽  
Kewen Xia

In order to improve the strip surface defect recognition and classification accuracy and efficiency, Rough Set (RS) attribute reduction algorithm based on Particle Swarm Optimization (PSO) algorithm was used on the optimal selection of strip surface defect image decision features, which removed redundant attributes, provided reduction data for the follow-up Support Vector Machine (SVM) model, reduced vector machine learning time, and constructed the SVM classifier, which uses Second-Order Cone Programming (SOCP) and multikernel Support Vector Machine classification model. Six kinds of typical defects such as rust, scratch, orange peel, bubble, surface crack, and rolled-in scale are recognized and classification is made using this classifier. The experimental results show that the classification accuracy of the proposed algorithm is 99.5%, which is higher than that of SVM algorithm and Relevance Vector Machine (RVM) algorithm. And because of using the Rough Set attribute reduction algorithm based on PSO algorithm, the learning time of SVM is reduced, and the average time of the classification and recognition model is 58.3 ms. In summary, the PSO-RS&SOCP-SVM evaluation model is not only more efficient in time, but also more worthy of popularization and application in the accuracy.


2021 ◽  
pp. 1-15
Author(s):  
Rongde Lin ◽  
Jinjin Li ◽  
Dongxiao Chen ◽  
Jianxin Huang ◽  
Yingsheng Chen

Fuzzy covering rough set model is a popular and important theoretical tool for computation of uncertainty, and provides an effective approach for attribute reduction. However, attribute reductions derived directly from fuzzy lower or upper approximations actually still occupy large of redundant information, which leads to a lower ratio of attribute-reduced. This paper introduces a kind of parametric observation sets on the approximations, and further proposes so called parametric observational-consistency, which is applied to attribute reduction in fuzzy multi-covering decision systems. Then the related discernibility matrix is developed to provide a way of attribute reduction. In addition, for multiple observational parameters, this article also introduces a recursive method to gradually construct the multiple discernibility matrix by composing the refined discernibility matrix and incremental discernibility matrix based on previous ones. In such case, an attribute reduction algorithm is proposed. Finally, experiments are used to demonstrate the feasibility and effectiveness of our proposed method.


2013 ◽  
Vol 347-350 ◽  
pp. 3119-3122
Author(s):  
Yan Xue Dong ◽  
Fu Hai Huang

The basic theory of rough set is given and a method for texture classification is proposed. According to the GCLM theory, texture feature is extracted and generate 32 feature vectors to form a decision table, find a minimum set of rules for classification after attribute discretization and knowledge reduction, experimental results show that using rough set theory in texture classification, accompanied by appropriate discrete method and reduction algorithm can get better classification results


Sign in / Sign up

Export Citation Format

Share Document