A Toolkit for Parallel Overset Grid Assembly Targeting Large-Scale Moving Body Aerodynamic Simulations

Author(s):  
George Zagaris ◽  
Michael T. Campbell ◽  
Daniel J. Bodony ◽  
Eric Shaffer ◽  
Mark D. Brandyberry
Keyword(s):  
Author(s):  
P. J. E. Peebles

This chapter discusses the development of physical sciences in seemingly chaotic ways, by paths that are at best dimly seen at the time. It refers to the history of ideas as an important part of any science, and particularly worth examining in cosmology, where the subject has evolved over several generations. It also examines the puzzle of inertia, which traces the connection to Albert Einstein's bold idea that the universe is homogeneous in the large-scale average called “cosmological principle.” The chapter cites Newtonian mechanics that defines a set of preferred motions in space, the inertial reference frames, by the condition that a freely moving body has a constant velocity. It talks about Ernst Mach, who argued that inertial frames are determined relative to the motion of the rest of the matter in the universe.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


Sign in / Sign up

Export Citation Format

Share Document