scholarly journals Adaptive Parallel/Serial Sampling Mechanisms for Particle Filtering in Dynamic Bayesian Networks

Author(s):  
Eva Besada-Portas ◽  
Sergey M. Plis ◽  
Jesus M. de la Cruz ◽  
Terran Lane
Author(s):  
Gregory Bartram ◽  
Sankaran Mahadevan

This paper proposes a methodology for probabilistic prognosis of a system using a dynamic Bayesian network (DBN). Dynamic Bayesian networks are suitable for probabilistic prognosis because of their ability to integrate information in a variety of formats from various sources and give a probabilistic representation of the system state. Further, DBNs provide a platform naturally suited for seamless integration of diagnosis, uncertainty quantification, and prediction. In the proposed methodology, a DBN is used for online diagnosis via particle filtering, providing a current estimate of the joint distribution over the system variables. The information available in the state estimate also helps to quantify the uncertainty in diagnosis. Next, based on this probabilistic state estimate, future states of the system are predicted using the DBN and sequential or recursive Monte Carlo sampling. Prediction in this manner provides the necessary information to estimate the distribution of remaining use life (RUL). The prognosis procedure, which is system specific, is validated using a suite of offline hierarchical metrics. The prognosis methodology is demonstrated on a hydraulic actuator subject to a progressive seal wear that results in internal leakage between the chambers of the actuator.


2005 ◽  
Vol 24 ◽  
pp. 759-797 ◽  
Author(s):  
S. Sanghai ◽  
P. Domingos ◽  
D. Weld

Stochastic processes that involve the creation of objects and relations over time are widespread, but relatively poorly studied. For example, accurate fault diagnosis in factory assembly processes requires inferring the probabilities of erroneous assembly operations, but doing this efficiently and accurately is difficult. Modeled as dynamic Bayesian networks, these processes have discrete variables with very large domains and extremely high dimensionality. In this paper, we introduce relational dynamic Bayesian networks (RDBNs), which are an extension of dynamic Bayesian networks (DBNs) to first-order logic. RDBNs are a generalization of dynamic probabilistic relational models (DPRMs), which we had proposed in our previous work to model dynamic uncertain domains. We first extend the Rao-Blackwellised particle filtering described in our earlier work to RDBNs. Next, we lift the assumptions associated with Rao-Blackwellization in RDBNs and propose two new forms of particle filtering. The first one uses abstraction hierarchies over the predicates to smooth the particle filter's estimates. The second employs kernel density estimation with a kernel function specifically designed for relational domains. Experiments show these two methods greatly outperform standard particle filtering on the task of assembly plan execution monitoring.


Optik ◽  
2014 ◽  
Vol 125 (10) ◽  
pp. 2243-2247 ◽  
Author(s):  
Rui Yao ◽  
Yanning Zhang ◽  
Yong Zhou ◽  
Shixiong Xia

2015 ◽  
Vol 764-765 ◽  
pp. 1319-1323
Author(s):  
Rong Shue Hsiao ◽  
Ding Bing Lin ◽  
Hsin Piao Lin ◽  
Jin Wang Zhou

Pyroelectric infrared (PIR) sensors can detect the presence of human without the need to carry any device, which are widely used for human presence detection in home/office automation systems in order to improve energy efficiency. However, PIR detection is based on the movement of occupants. For occupancy detection, PIR sensors have inherent limitation when occupants remain relatively still. Multisensor fusion technology takes advantage of redundant, complementary, or more timely information from different modal sensors, which is considered an effective approach for solving the uncertainty and unreliability problems of sensing. In this paper, we proposed a simple multimodal sensor fusion algorithm, which is very suitable to be manipulated by the sensor nodes of wireless sensor networks. The inference algorithm was evaluated for the sensor detection accuracy and compared to the multisensor fusion using dynamic Bayesian networks. The experimental results showed that a detection accuracy of 97% in room occupancy can be achieved. The accuracy of occupancy detection is very close to that of the dynamic Bayesian networks.


Author(s):  
Josquin Foulliaron ◽  
Laurent Bouillaut ◽  
Patrice Aknin ◽  
Anne Barros

The maintenance optimization of complex systems is a key question. One important objective is to be able to anticipate future maintenance actions required to optimize the logistic and future investments. That is why, over the past few years, the predictive maintenance approaches have been an expanding area of research. They rely on the concept of prognosis. Many papers have shown how dynamic Bayesian networks can be relevant to represent multicomponent complex systems and carry out reliability studies. The diagnosis and maintenance group from French institute of science and technology for transport, development and networks (IFSTTAR) developed a model (VirMaLab: Virtual Maintenance Laboratory) based on dynamic Bayesian networks in order to model a multicomponent system with its degradation dynamic and its diagnosis and maintenance processes. Its main purpose is to model a maintenance policy to be able to optimize the maintenance parameters due to the use of dynamic Bayesian networks. A discrete state-space system is considered, periodically observable through a diagnosis process. Such systems are common in railway or road infrastructure fields. This article presents a prognosis algorithm whose purpose is to compute the remaining useful life of the system and update this estimation each time a new diagnosis is available. Then, a representation of this algorithm is given as a dynamic Bayesian network in order to be next integrated into the Virtual Maintenance Laboratory model to include the set of predictive maintenance policies. Inference computation questions on the considered dynamic Bayesian networks will be discussed. Finally, an application on simulated data will be presented.


Sign in / Sign up

Export Citation Format

Share Document