dynamic bayesian network
Recently Published Documents


TOTAL DOCUMENTS

581
(FIVE YEARS 178)

H-INDEX

33
(FIVE YEARS 7)

Author(s):  
Afizan Azman ◽  
Mohd. Fikri Azli Abdullah ◽  
Sumendra Yogarayan ◽  
Siti Fatimah Abdul Razak ◽  
Hartini Azman ◽  
...  

<span>Cognitive distraction is one of the several contributory factors in road accidents. A number of cognitive distraction detection methods have been developed. One of the most popular methods is based on physiological measurement. Head orientation, gaze rotation, blinking and pupil diameter are among popular physiological parameters that are measured for driver cognitive distraction. In this paper, lips and eyebrows are studied. These new features on human facial expression are obvious and can be easily measured when a person is in cognitive distraction. There are several types of movement on lips and eyebrows that can be captured to indicate cognitive distraction. Correlation and classification techniques are used in this paper for performance measurement and comparison. Real time driving experiment was setup and faceAPI was installed in the car to capture driver’s facial expression. Linear regression, support vector machine (SVM), static Bayesian network (SBN) and logistic regression (LR) are used in this study. Results showed that lips and eyebrows are strongly correlated and have a significant role in improving cognitive distraction detection. Dynamic Bayesian network (DBN) with different confidence of levels was also used in this study to classify whether a driver is distracted or not.</span>


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 414
Author(s):  
Franck Schoefs ◽  
Thanh-Binh Tran

Marine growth is a known problem for oceanic infrastructure and has been shown to negatively impact the reliability of bottom-fixed or floating offshore structures submitted to fatigue or extreme loading. Among other effects, it has been shown to change drag forces by increasing member diameters and modifying the roughness. Bio-colonization being highly random, the objective of this paper is to show how one-site inspection data increases reliability by decreasing uncertainties. This can be introduced in a reliability-based inspection framework for optimizing inspection and maintenance (here, cleaning). The modeling and computation are illustrated through the reliability analysis of a monopile in the European Atlantic area subjected to marine growth and according to the plastic collapse limit state. Based on surveys of structures in the North Sea, long-term stochastic modeling (space and time) of the marine growth thickness is first suggested. A Dynamic Bayesian Network is then developed for reliability updating from the inspection data. Finally, several realistic (10–20 measurements) inspection strategies are compared in terms of reliability improvement and the accuracy of reliability assessment.


2021 ◽  
Vol 7 (1) ◽  
pp. 4
Author(s):  
Edward Anuat ◽  
Douglas L. Van Bossuyt ◽  
Anthony Pollman

The ability to provide uninterrupted power to military installations is paramount in executing a country’s national defense strategy. Microgrid architectures increase installation energy resilience through redundant local generation sources and the capability for grid independence. However, deliberate attacks from near-peer competitors can disrupt the associated supply chain network, thereby affecting mission critical loads. Utilizing an integrated discrete-time Markov chain and dynamic Bayesian network approach, we investigate disruption propagation throughout a supply chain network and quantify its mission impact on an islanded microgrid. We propose a novel methodology and an associated metric we term “energy resilience impact” to identify and address supply chain disruption risks to energy security. The proposed methodology addresses a gap in the literature and practice where it is assumed supply chains will not be disrupted during incidents involving microgrids. A case study of a fictional military installation is presented to demonstrate how installation energy managers can adopt this methodology for the design and improvement of military microgrids. The fictional case study shows how supply chain disruptions can impact the ability of a microgrid to successfully supply electricity to critical loads throughout an islanding event.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yue Liu ◽  
Haoyuan Feng ◽  
Kun Guo

As the most important component of the capital market, the stock market has always been regarded as the “barometer” of the macroeconomy. However, many researchers have found that the stock market and macroeconomy are operating separately. This paper uses the dynamic Bayesian network method to study the dynamic relationship between the Chinese macroeconomic system and the stock market. The study found that the correlation between the macroeconomic system and the stock market is not consistent in different time periods. For most of the time, the stock system and the macroeconomic system are relatively independent. However, several macroeconomic factors such as Purchase Management Index could affect the stock market through some industries. A conclusion is drawn that the “barometer” function of the stock market is weak and easy to be damaged by factors such as the irrational sentiment of investors.


Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 298 ◽  
Author(s):  
Valentina Zaccaria ◽  
Amare Desalegn Fentaye ◽  
Konstantinos Kyprianidis

The reliability and cost-effectiveness of energy conversion in gas turbine systems are strongly dependent on an accurate diagnosis of possible process and sensor anomalies. Because data collected from a gas turbine system for diagnosis are inherently uncertain due to measurement noise and errors, probabilistic methods offer a promising tool for this problem. In particular, dynamic Bayesian networks present numerous advantages. In this work, two Bayesian networks were developed for compressor fouling and turbine erosion diagnostics. Different prior probability distributions were compared to determine the benefits of a dynamic, first-order hierarchical Markov model over a static prior probability and one dependent only on time. The influence of data uncertainty and scatter was analyzed by testing the diagnostics models on simulated fleet data. It was shown that the condition-based hierarchical model resulted in the best accuracy, and the benefit was more significant for data with higher overlap between states (i.e., for compressor fouling). The improvement with the proposed dynamic Bayesian network was 8 percentage points (in classification accuracy) for compressor fouling and 5 points for turbine erosion compared with the static network.


Sign in / Sign up

Export Citation Format

Share Document