Association Rule Based Situation Awareness in Web-Based Environmental Monitoring Systems

Author(s):  
Meng Zhang ◽  
Byeong Ho Kang ◽  
Quan Bai
2021 ◽  
Vol 5 (3) ◽  
pp. 1-30
Author(s):  
Gonçalo Jesus ◽  
António Casimiro ◽  
Anabela Oliveira

Sensor platforms used in environmental monitoring applications are often subject to harsh environmental conditions while monitoring complex phenomena. Therefore, designing dependable monitoring systems is challenging given the external disturbances affecting sensor measurements. Even the apparently simple task of outlier detection in sensor data becomes a hard problem, amplified by the difficulty in distinguishing true data errors due to sensor faults from deviations due to natural phenomenon, which look like data errors. Existing solutions for runtime outlier detection typically assume that the physical processes can be accurately modeled, or that outliers consist in large deviations that are easily detected and filtered by appropriate thresholds. Other solutions assume that it is possible to deploy multiple sensors providing redundant data to support voting-based techniques. In this article, we propose a new methodology for dependable runtime detection of outliers in environmental monitoring systems, aiming to increase data quality by treating them. We propose the use of machine learning techniques to model each sensor behavior, exploiting the existence of correlated data provided by other related sensors. Using these models, along with knowledge of processed past measurements, it is possible to obtain accurate estimations of the observed environment parameters and build failure detectors that use these estimations. When a failure is detected, these estimations also allow one to correct the erroneous measurements and hence improve the overall data quality. Our methodology not only allows one to distinguish truly abnormal measurements from deviations due to complex natural phenomena, but also allows the quantification of each measurement quality, which is relevant from a dependability perspective. We apply the methodology to real datasets from a complex aquatic monitoring system, measuring temperature and salinity parameters, through which we illustrate the process for building the machine learning prediction models using a technique based on Artificial Neural Networks, denoted ANNODE ( ANN Outlier Detection ). From this application, we also observe the effectiveness of our ANNODE approach for accurate outlier detection in harsh environments. Then we validate these positive results by comparing ANNODE with state-of-the-art solutions for outlier detection. The results show that ANNODE improves existing solutions regarding accuracy of outlier detection.


2021 ◽  
Vol 5 (6) ◽  
pp. 1099-1105
Author(s):  
Desta Yolanda ◽  
Mohammad Hafiz Hersyah ◽  
Eno Marozi

Security monitoring systems using face recognition can be applied to CCTV or IP cameras. This is intended to improve the security system and make it easier for users to track criminals is theft. The experiment was carried out by detecting human faces for 24 hours using different cameras, namely an HD camera that was active during the day and a Night Vision camera that was active at night. The application of Unsupervised Learning method with the concept of an image cluster, aims to distinguish the faces of known or unknown people according to the dataset built in the Raspberry Pi 4. The user interface media of this system is a web-based application built with Python Flask and Python MySQL. This application can be accessed using the domain provided by the IP Forwarding device which can be accessed anywhere. According to the test results on optimization of storage, the system is able to save files only when a face is detected with an average file size of ± 2.28 MB for 1x24 hours of streaming. So that this storage process becomes more efficient and economical compared to the storage process for CCTV or IP cameras in general.


Sign in / Sign up

Export Citation Format

Share Document