One Improvement Control Method of Maximum Power Point Tracking

Author(s):  
Zheng-ming Li ◽  
Xiao-hui Xia ◽  
Yan-yan Yan
2010 ◽  
Vol 121-122 ◽  
pp. 93-96 ◽  
Author(s):  
Hou Sheng Zhang

As the energy crisis and the pollution are serious, the exploitation of solar has received more and more attentions. It is well known that for a given solar radiation intensity and solar cell temperature there exists a maximum power point at which the power generated from the PV panel is at its maximum. In order to improve the efficiency of the system, the main method is to regulate the output of array to develop the maximum power point tracking (MPPT). In this paper the principle and control method of DC/DC conversion in grid-connected photovoltaic system are experimentally discussed. The conductance incremental method is analyzed in detail, and an improved variable step-size control method is implemented for MPPT with pulse width modulation. The experimental results prove the feasibility and correctness of the control method.


2012 ◽  
Vol 512-515 ◽  
pp. 202-207
Author(s):  
Qiang Xu ◽  
Xiao Chun Zhang ◽  
Kai Chun Ren ◽  
Xing Qi Zhang ◽  
Xiao Jun Liu

This paper analyzes the characteristics of solar cells, and establishes the simulation model from its mathematical expressions which can factually reflects the change of solar cells’ parameters. The commonly used method of maximum power point tracking technologies is introduced. A PV system’s most maximum power is simulated by using the fuzzy control method. Simulation results show that the system can work at a stable maximum power point rapidly.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1620 ◽  
Author(s):  
Anirudh Budnar Acharya ◽  
Mattia Ricco ◽  
Dezso Sera ◽  
Remus Teodorescu ◽  
Lars Einar Norum

In this paper, a control method is proposed that allows the extraction of maximum power from each individual photovoltaic string connected to the Modular Multilevel Converter (MMC) and inject balanced power to the AC grid. The MMC solution used does not need additional DC–DC converters for the maximum power point tracking. In the MMC, the photovoltaic strings are connected directly to the sub-modules. It is shown that the proposed inverter solution can provide balanced three-phase output power despite an unbalanced power generation. The maximum power of the photovoltaic string is effectively harnessed due to the increased granularity of the maximum power point tracking. An algorithm that tracks the sub-module capacitor voltages to their respective voltage references is proposed. A detailed modeling and control method for balanced operation of the proposed topology is discussed. The operation of the MMC under unbalanced power generation is discussed. Simulation results are provided that show the effectiveness of the proposed control under unequal irradiance.


Sign in / Sign up

Export Citation Format

Share Document