Classification of Mammogram Images Using Discrete Wavelet Transformations

Author(s):  
K. K. Rajkumar ◽  
G. Raju
2021 ◽  
Vol 9 (2) ◽  
pp. 10-15
Author(s):  
Harendra Singh ◽  
Roop Singh Solanki

In this research paper, a new modified approach is proposed for brain tumor classification as well as feature extraction from Magnetic Resonance Imaging (MRI) after pre-processing of the images. The discrete wavelet transformation (DWT) technique is used for feature extraction from MRI images and Artificial Neural Network (ANN) is used for the classification of the type of tumor according to extracted features. Mean, Standard deviation, Variance, Entropy, Skewness, Homogeneity, Contrast, Correlation are the main features used to classify the type of tumor. The proposed model can give a better result in comparison with other available techniques in less computational time as well as a high degree of accuracy. The training and testing accuracies of the proposed model are 100% and 98.20% with a 98.70 % degree of precision respectively.


2020 ◽  
Author(s):  
Jen Looi Tee ◽  
Swee King Phang ◽  
Wei Jen Chew ◽  
Siew Wei Phang ◽  
Hou Kit Mun

Sensor Review ◽  
2019 ◽  
Vol 39 (1) ◽  
pp. 107-120 ◽  
Author(s):  
Deepika Kishor Nagthane ◽  
Archana M. Rajurkar

PurposeOne of the main reasons for increase in mortality rate in woman is breast cancer. Accurate early detection of breast cancer seems to be the only solution for diagnosis. In the field of breast cancer research, many new computer-aided diagnosis systems have been developed to reduce the diagnostic test false positives because of the subtle appearance of breast cancer tissues. The purpose of this study is to develop the diagnosis technique for breast cancer using LCFS and TreeHiCARe classifier model.Design/methodology/approachThe proposed diagnosis methodology initiates with the pre-processing procedure. Subsequently, feature extraction is performed. In feature extraction, the image features which preserve the characteristics of the breast tissues are extracted. Consequently, feature selection is performed by the proposed least-mean-square (LMS)-Cuckoo search feature selection (LCFS) algorithm. The feature selection from the vast range of the features extracted from the images is performed with the help of the optimal cut point provided by the LCS algorithm. Then, the image transaction database table is developed using the keywords of the training images and feature vectors. The transaction resembles the itemset and the association rules are generated from the transaction representation based ona priorialgorithm with high conviction ratio and lift. After association rule generation, the proposed TreeHiCARe classifier model emanates in the diagnosis methodology. In TreeHICARe classifier, a new feature index is developed for the selection of a central feature for the decision tree centered on which the classification of images into normal or abnormal is performed.FindingsThe performance of the proposed method is validated over existing works using accuracy, sensitivity and specificity measures. The experimentation of proposed method on Mammographic Image Analysis Society database resulted in classification of normal and abnormal cancerous mammogram images with an accuracy of 0.8289, sensitivity of 0.9333 and specificity of 0.7273.Originality/valueThis paper proposes a new approach for the breast cancer diagnosis system by using mammogram images. The proposed method uses two new algorithms: LCFS and TreeHiCARe. LCFS is used to select optimal feature split points, and TreeHiCARe is the decision tree classifier model based on association rule agreements.


Sign in / Sign up

Export Citation Format

Share Document