Nonparametric Estimator of Value-at-Risk for Stationary Financial Returns

Author(s):  
Chu Huang
2013 ◽  
Author(s):  
Manuela Braione ◽  
Nicolas K. Scholtes

2010 ◽  
Vol 13 (3) ◽  
pp. 345-361 ◽  
Author(s):  
C Milwidsky ◽  
Eben Mare

Traditional parametric Value at Risk (VaR) estimates assume normality in financial returns data.  However, it is well known that this distribution, while convenient and simple to implement, underestimates the kurtosis demonstrated in most financial returns.  Huisman, Koedijk and Pownall (1998) replace the normal distribution with the Student’s t distribution in modelling financial returns for calculation of VaR.  In this paper we extend their approach to the Monte Carlo simulation of VaR on both linear and non-linear instruments with application to the South African equity market.  We show, via backtesting, that the t-distribution produces superior results to the normal one.


2015 ◽  
Vol 44 (5) ◽  
pp. 259-267
Author(s):  
Frank Schuhmacher ◽  
Benjamin R. Auer
Keyword(s):  
At Risk ◽  

Controlling ◽  
2004 ◽  
Vol 16 (7) ◽  
pp. 425-426
Author(s):  
Mischa Seiter ◽  
Sven Eckert
Keyword(s):  
At Risk ◽  

CFA Digest ◽  
1999 ◽  
Vol 29 (2) ◽  
pp. 76-78
Author(s):  
Thomas J. Latta

Author(s):  
Arndt P. Funken ◽  
Alexander Obeid
Keyword(s):  
At Risk ◽  

2012 ◽  
Vol 6 (4) ◽  
pp. 67-93
Author(s):  
Chang-Cheng Changchien ◽  
Chu-Hsiung Lin ◽  
Wei-Shun Kao

Sign in / Sign up

Export Citation Format

Share Document