Ensemble Pruning via Base-Classifier Replacement

Author(s):  
Huaping Guo ◽  
Ming Fan
2019 ◽  
Vol 49 (9) ◽  
pp. 3188-3206 ◽  
Author(s):  
Danyang Li ◽  
Guihua Wen ◽  
Xu Li ◽  
Xianfa Cai

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xiangkui Jiang ◽  
Chang-an Wu ◽  
Huaping Guo

A forest is an ensemble with decision trees as members. This paper proposes a novel strategy to pruning forest to enhance ensemble generalization ability and reduce ensemble size. Unlike conventional ensemble pruning approaches, the proposed method tries to evaluate the importance of branches of trees with respect to the whole ensemble using a novel proposed metric called importance gain. The importance of a branch is designed by considering ensemble accuracy and the diversity of ensemble members, and thus the metric reasonably evaluates how much improvement of the ensemble accuracy can be achieved when a branch is pruned. Our experiments show that the proposed method can significantly reduce ensemble size and improve ensemble accuracy, no matter whether ensembles are constructed by a certain algorithm such as bagging or obtained by an ensemble selection algorithm, no matter whether each decision tree is pruned or unpruned.


2020 ◽  
Vol 34 (04) ◽  
pp. 3858-3865
Author(s):  
Huijie Feng ◽  
Chunpeng Wu ◽  
Guoyang Chen ◽  
Weifeng Zhang ◽  
Yang Ning

Recently smoothing deep neural network based classifiers via isotropic Gaussian perturbation is shown to be an effective and scalable way to provide state-of-the-art probabilistic robustness guarantee against ℓ2 norm bounded adversarial perturbations. However, how to train a good base classifier that is accurate and robust when smoothed has not been fully investigated. In this work, we derive a new regularized risk, in which the regularizer can adaptively encourage the accuracy and robustness of the smoothed counterpart when training the base classifier. It is computationally efficient and can be implemented in parallel with other empirical defense methods. We discuss how to implement it under both standard (non-adversarial) and adversarial training scheme. At the same time, we also design a new certification algorithm, which can leverage the regularization effect to provide tighter robustness lower bound that holds with high probability. Our extensive experimentation demonstrates the effectiveness of the proposed training and certification approaches on CIFAR-10 and ImageNet datasets.


Sign in / Sign up

Export Citation Format

Share Document