POD Model Order Reduction of Electrical Networks with Semiconductors Modeled by the Transient Drift–Diffusion Equations

Author(s):  
Michael Hinze ◽  
Martin Kunkel ◽  
Ulrich Matthes
2009 ◽  
Vol 7 ◽  
pp. 113-118
Author(s):  
S. Ludwig ◽  
W. Mathis

Abstract. In modeling of distributed systems with distributed sources large networks with RLC-elements and independent sources arise. This high complexity leads to a high effort in simulations. Therefore model reduction can be used to reduce these networks, preserving the behavior at the observed nodes in the networks. For the reduction of networks with a large number of independent sources only a weak reduction is enabled with standard model reduction techniques. In this paper an efficient reduction of networks with a large number of sources with piece-wise-linear waveforms is presented, using the decomposition of piece-wise-linear functions. With the proposed method a higher reduction of the network and/or a higher accuracy can be achieved with model reduction. The validity and efficiency of the proposed method is shown by reducing a RCI-Grid model.


Author(s):  
Vladimir Lantsov ◽  
A. Papulina

The new algorithm of solving harmonic balance equations which used in electronic CAD systems is presented. The new algorithm is based on implementation to harmonic balance equations the ideas of model order reduction methods. This algorithm allows significantly reduce the size of memory for storing of model equations and reduce of computational costs.


Sign in / Sign up

Export Citation Format

Share Document