2006 ◽  
Author(s):  
Zhidang Deng ◽  
Feng Gao ◽  
Xiandong Liu

Author(s):  
Gurubasavaraju Tharehalli mata ◽  
Vijay Mokenapalli ◽  
Hemanth Krishna

This study assesses the dynamic performance of the semi-active quarter car vehicle under random road conditions through a new approach. The monotube MR damper is modelled using non-parametric method based on the dynamic characteristics obtained from the experiments. This model is used as the variable damper in a semi-active suspension. In order to control the vibration caused under random road excitation, an optimal sliding mode controller (SMC) is utilised. Particle swarm optimisation (PSO) is coupled to identify the parameters of the SMC. Three optimal criteria are used for determining the best sliding mode controller parameters which are later used in estimating the ride comfort and road handling of a semi-active suspension system. A comparison between the SMC, Skyhook, Ground hook and PID controller suggests that the optimal parameters with SMC have better controllability than the PID controller. SMC has also provided better controllability than the PID controller at higher road roughness.


2010 ◽  
Vol 159 ◽  
pp. 644-649
Author(s):  
Jing Hua Zhao ◽  
Wen Bo Zhang ◽  
He Hao

Based on the analysis of performance of vehicle and its suspension, half vehicle model of five DOF and road model were built and the dynamic equations of half vehicle were derived according to the parameters of a commercial vehicle. In addition, a novel fuzzy logic control system based on semi-active suspension was introduced to achieve the optimal vibration characteristic, with changing the adjustable dampers according to dynamic vertical body acceleration signal. The fuzzy control was designed based on non-reference model method that acceleration value was sent to the fuzzy controller directly. And then, simulation analysis of semi-active suspension with fuzzy control method were implemented on the B-class road surface. The results showed that the semi-active suspension control system introduced in this paper has better performance on vieicle vibration characteristic, compared to passive suspension.


Author(s):  
Sergio Alberto Rueda Villanoba ◽  
Carlos Borrás Pinilla

Abstract In this study a Neural Network based fault tolerant control is proposed to accommodate oil leakages in a magnetorheological suspension system based in a half car dynamic model. This model consists of vehicle body (spring mass) connected by the MR suspension system to two lateral wheels (unsprung mass). The semi-active suspension system is a four states nonlinear model; it can be written as a state space representation. The main objectives of a suspension are: Isolate the chassis from road disturbances (passenger comfort) and maintain contact between tire and road to provide better maneuverability, safety and performance. On the other hand, component faults/failures are inevitable in all practical systems, the shock absorbers of semi-active suspensions are prone to fail due to fluid leakage but quickly detect and diagnose this fault in the system, avoid major damage to the system and ensure the safety of the driver. To successfully achieve desirable control performance, it is necessary to have a damping force model which can accurately represent the highly nonlinear and hysteretic dynamic of the MR damper. To simulate parameters of the damper, a quasi-static model was applied, quasi-static approaches are based on non-newtonian yield stress fluids flow by using the Bingham MR Damper Model, relating the relative displacement of the piston, the frictional force, a damping constant, the stiffness of the elastic element of the damper and an offset force. The Fault detection and isolation module is based on residual generation algorithms. The residua r is computed as the difference between the displacement signal of functional and faulty model, when the residual is close to zero, the process is free of faults, while any change in r represents a faulty scheme then a wavelet transform, (Morlet wave function) is used to determine the natural frequencies and amplitudes of displacement and acceleration signal during the failure, this module provides parameters to the neural network controller in order to accommodate the failure using compensation forces from the remaining healthy damper. The neural network uses the error between the plant output and the neural network plant for computing the required electric current to correct the malfunction using the inverse dynamics function of the MR damper model. Consequently, a bump condition, and a random profile road (ISO 8608) described by the power spectral density (PSD) of its vertical displacement, is used as disturbance of control system. The performance of the proposed FTC structure is demonstrated trough simulation. Results shows that the control system could reduce the effect of the partial fault of the MR Damper on system performance.


Sign in / Sign up

Export Citation Format

Share Document