Elliptic Curve Point Multiplication Using Halving

Author(s):  
Darrel Hankerson ◽  
Alfred Menezes
Author(s):  
Alessandro Barenghi ◽  
Diego Carrera ◽  
Silvia Mella ◽  
Andrea Pace ◽  
Gerardo Pelosi ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2050
Author(s):  
Malek Safieh ◽  
Johann-Philipp Thiers ◽  
Jürgen Freudenberger

This work presents a new concept to implement the elliptic curve point multiplication (PM). This computation is based on a new modular arithmetic over Gaussian integer fields. Gaussian integers are a subset of the complex numbers such that the real and imaginary parts are integers. Since Gaussian integer fields are isomorphic to prime fields, this arithmetic is suitable for many elliptic curves. Representing the key by a Gaussian integer expansion is beneficial to reduce the computational complexity and the memory requirements of secure hardware implementations, which are robust against attacks. Furthermore, an area-efficient coprocessor design is proposed with an arithmetic unit that enables Montgomery modular arithmetic over Gaussian integers. The proposed architecture and the new arithmetic provide high flexibility, i.e., binary and non-binary key expansions as well as protected and unprotected PM calculations are supported. The proposed coprocessor is a competitive solution for a compact ECC processor suitable for applications in small embedded systems.


2011 ◽  
Vol 55 (5) ◽  
pp. 629-647 ◽  
Author(s):  
S. Antao ◽  
J.-C. Bajard ◽  
L. Sousa

2014 ◽  
Vol 931-932 ◽  
pp. 1441-1446 ◽  
Author(s):  
Krissanee Kamthawee ◽  
Bhichate Chiewthanakul

Recently elliptic curve cryptosystems are widely accepted for security applications key generation, signature and verification. Cryptographic mechanisms based on elliptic curves depend on arithmetic involving the points of the curve. it is possible to use smaller primes, or smaller finite fields, with elliptic curves and achieve a level of security comparable to that for much larger integers. Koblitz curves, also known as anomalous binary curves, are elliptic curves defined over F2. The primary advantage of these curves is that point multiplication algorithms can be devised that do not use any point doublings. The ElGamal cryptosystem, which is based on the Discrete Logarithm problem can be implemented in any group. In this paper, we propose the ElGamal over Koblitz Curve Scheme by applying the arithmetic on Koblitz curve to the ElGamal cryptosystem. The advantage of this scheme is that point multiplication algorithms can be speeded up the scalar multiplication in the affine coodinate of the curves using Frobenius map. It has characteristic two, therefore it’s arithmetic can be designed in any computer hardware. Moreover, it has more efficient to employ the TNAF method for scalar multiplication on Koblitz curves to decrease the number of nonzero digits. It’s security relies on the inability of a forger, who does not know a private key, to compute elliptic curve discrete logarithm.


Sign in / Sign up

Export Citation Format

Share Document