Low-Frequency, Functional, Modes of Proteins: All-Atom and Coarse-Grained Normal Mode Analysis

Author(s):  
Adrien Nicolaï ◽  
Patrice Delarue ◽  
Patrick Senet
Soft Matter ◽  
2020 ◽  
Vol 16 (14) ◽  
pp. 3443-3455 ◽  
Author(s):  
M. Martín-Bravo ◽  
J. M. Gomez Llorente ◽  
J. Hernández-Rojas

A minimal coarse-grained model unveils relevant structural properties of icosahedral viral capsids when fitted to reproduce their low-frequency normal-mode spectrum.


2008 ◽  
Vol 105 (40) ◽  
pp. 15358-15363 ◽  
Author(s):  
Mingyang Lu ◽  
Jianpeng Ma

In this article, we report a method for coarse-grained normal mode analysis called the minimalist network model. The main features of the method are that it can deliver accurate low-frequency modes on structures without undergoing initial energy minimization and that it also retains the details of molecular interactions. The method does not require any additional adjustable parameters after coarse graining and is computationally very fast. Tests on modeling the experimentally measured anisotropic displacement parameters in biomolecular x-ray crystallography demonstrate that the method can consistently perform better than other commonly used methods including our own one. We expect this method to be effective for applications such as structural refinement and conformational sampling.


2003 ◽  
Vol 13 (04) ◽  
pp. 903-936 ◽  
Author(s):  
T. GLOBUS ◽  
D. WOOLARD ◽  
M. BYKHOVSKAIA ◽  
B. GELMONT ◽  
L. WERBOS ◽  
...  

The terahertz frequency absorption spectra of DNA molecules reflect low-frequency internal helical vibrations involving rigidly bound subgroups that are connected by the weakest bonds, including the hydrogen bonds of the DNA base pairs, and/or non-bonded interactions. Although numerous difficulties make the direct identification of terahertz phonon modes in biological materials very challenging, recent studies have shown that such measurements are both possible and useful. Spectra of different DNA samples reveal a large number of modes and a reasonable level of sequence-specific uniqueness. This chapter utilizes computational methods for normal mode analysis and theoretical spectroscopy to predict the low-frequency vibrational absorption spectra of short artificial DNA and RNA. Here the experimental technique is described in detail, including the procedure for sample preparation. Careful attention was paid to the possibility of interference or etalon effects in the samples, and phenomena were clearly differentiated from the actual phonon modes. The results from Fourier-transform infrared spectroscopy of DNA macromolecules and related biological materials in the terahertz frequency range are presented. In addition, a strong anisotropy of terahertz characteristics is demonstrated. Detailed tests of the ability of normal mode analysis to reproduce RNA vibrational spectra are also conducted. A direct comparison demonstrates a correlation between calculated and experimentally observed spectra of the RNA polymers, thus confirming that the fundamental physical nature of the observed resonance structure is caused by the internal vibration modes in the macromolecules. Application of artificial neural network analysis for recognition and discrimination between different DNA molecules is discussed.


2009 ◽  
Vol 106 (37) ◽  
pp. 15667-15672 ◽  
Author(s):  
Anil Korkut ◽  
Wayne A. Hendrickson

Activities of many biological macromolecules involve large conformational transitions for which crystallography can specify atomic details of alternative end states, but the course of transitions is often beyond the reach of computations based on full-atomic potential functions. We have developed a coarse-grained force field for molecular mechanics calculations based on the virtual interactions of Cα atoms in protein molecules. This force field is parameterized based on the statistical distribution of the energy terms extracted from crystallographic data, and it is formulated to capture features dependent on secondary structure and on residue-specific contact information. The resulting force field is applied to energy minimization and normal mode analysis of several proteins. We find robust convergence in minimizations to low energies and energy gradients with low degrees of structural distortion, and atomic fluctuations calculated from the normal mode analyses correlate well with the experimental B-factors obtained from high-resolution crystal structures. These findings suggest that the virtual atom force field is a suitable tool for various molecular mechanics applications on large macromolecular systems undergoing large conformational changes.


1994 ◽  
pp. 197-203
Author(s):  
Srikanth Sastry ◽  
H. Eugene Stanley ◽  
Francesco Sciortino

Sign in / Sign up

Export Citation Format

Share Document