Robust Color Image Watermarking Scheme Using JFIF -YCbCr Color Space in Wavelet Domain

Author(s):  
A. K. Verma ◽  
C. Patvardhan ◽  
C. Vasantha Lakshmi
2015 ◽  
Vol 15 (2) ◽  
pp. 133-140 ◽  
Author(s):  
Roshan Koju ◽  
Shashidhar Ram Joshi

Since there are a number of color spaces, it has always been a big question to choose one for watermarking. The aim of this work is to find out better color space, among the frequently used one, under the same condition. Comparative performance analysis of color image watermarking technique in color channels of RGB, YUV, YCbCrcolor spaces was studied. For this purpose, color channels were watermarked using single level discrete wavelet transform-singular value decomposition (DWT-SVD). PSNR, and SSIM were used to test the imperceptibility of watermarked images. PSNR and NCC were used to measure the similarity of extracted and original watermarks.The maximum recorded PSNR value is 62.372 for R channel of RGB color space with SSIM value equal to 0.9709. Color channels of YCbCr color space were observed to be more robust and transparent as watermark image is best recovered from YCbCr color space with NCC values in the range 0.86 to 0.877 and SSIM values in the range 0.546to 0.554 under various geometric attacks.DOI: http://dx.doi.org/njst.v15i2.12130Nepal Journal of Science and Technology Vol. 15, No.2 (2014) 133-140


2018 ◽  
Vol 16 (07) ◽  
pp. 1850060 ◽  
Author(s):  
Ri-Gui Zhou ◽  
Peng Liu Yang ◽  
Xing Ao Liu ◽  
Hou Ian

Most of the studied quantum encryption algorithms are based on square images. In this paper, based on the improved novel quantum representation of color digital images model (INCQI), a quantum color image watermarking scheme is proposed. First, INCQI improved from NCQI is used to represent the carrier and watermark images with the size [Formula: see text] and [Formula: see text], respectively. Secondly, before embedding, the watermarking needs to be preprocessed. That is, the watermark image with the size of [Formula: see text] with 24-qubits color information is disordered by the fast bit-plane scramble algorithm, and then further expanded to an image with the size [Formula: see text] with 6-qubits pixel information by the nearest-neighbor interpolation method. Finally, the dual embedded algorithm is executed and a key image with 3-qubits information is generated for retrieving the original watermark image. The extraction process of the watermark image is the inverse process of its embedding, including inverse embedding, inverse expand and inverse scrambling operations. To show that our method has a better performance in visual quality and histogram graph, a simulation of different carrier and watermark images are conducted on the classical computer’s MATLAB.


2011 ◽  
Vol 38 (3) ◽  
pp. 2081-2098 ◽  
Author(s):  
Pan-Pan Niu ◽  
Xiang-Yang Wang ◽  
Yi-Ping Yang ◽  
Ming-Yu Lu

Sign in / Sign up

Export Citation Format

Share Document