Polynomial Time Learning of Some Multiple Context-Free Languages with a Minimally Adequate Teacher

Author(s):  
Ryo Yoshinaka ◽  
Alexander Clark
2011 ◽  
Vol 22 (08) ◽  
pp. 1813-1828 ◽  
Author(s):  
VOLKER DIEKERT ◽  
STEFFEN KOPECKI

The hairpin completion is an operation on formal languages which is inspired by the hairpin formation in biochemistry. Hairpin formations occur naturally within DNA-computing. It has been known that the hairpin completion of a regular language is linear context-free, but not regular, in general. However, for some time it is was open whether the regularity of the hairpin completion of a regular language is decidable. In 2009 this decidability problem has been solved positively in [5] by providing a polynomial time algorithm. In this paper we improve the complexity bound by showing that the decision problem is actually NL-complete. This complexity bound holds for both, the one-sided and the two-sided hairpin completions.


2005 ◽  
Vol 16 (05) ◽  
pp. 1039-1070 ◽  
Author(s):  
LILA KARI ◽  
STAVROS KONSTANTINIDIS ◽  
PETR SOSÍK

The problem of negative design of DNA languages is addressed, that is, properties and construction methods of large sets of words that prevent undesired bonds when used in DNA computations. We recall a few existing formalizations of the problem and then define the property of sim-bond-freedom, where sim is a similarity relation between words. We show that this property is decidable for context-free languages and polynomial-time decidable for regular languages. The maximality of this property also turns out to be decidable for regular languages and polynomial-time decidable for an important case of the Hamming similarity. Then we consider various construction methods for Hamming bond-free languages, including the recently introduced method of templates, and obtain a complete structural characterization of all maximal Hamming bond-free languages. This result is applicable to the θ-k-code property introduced by Jonoska and Mahalingam.


Sign in / Sign up

Export Citation Format

Share Document