Design and Verification of the MPFA Scheme for Three-Dimensional Phase Field Model of Dendritic Crystal Growth

Author(s):  
P. Strachota ◽  
M. Beneš
Fractals ◽  
1996 ◽  
Vol 04 (02) ◽  
pp. 169-174
Author(s):  
A. TANAKA ◽  
T. YOKOYAMA

The Gibbs-Thomson relation is well-known in crystal growth. That implies that the temperature of interface is not equal to the melting temperature due to its surface energy. It is, however, a qualitative relation near equilibrium, not clear not only qualitatively but also quantitatively far equilibrium. One of the authors has measured quantitative relation in experimental dendritic, i.e., far equilibrium, crystal growth. We also carried out numerical simulations using Phase Field Model, and obtained new relation. We will discuss this in detail here.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Min Yang ◽  
Lu Wang ◽  
Wentao Yan

AbstractA three-dimensional phase-field model is developed to simulate grain evolutions during powder-bed-fusion (PBF) additive manufacturing, while the physically-informed temperature profile is implemented from a thermal-fluid flow model. The phase-field model incorporates a nucleation model based on classical nucleation theory, as well as the initial grain structures of powder particles and substrate. The grain evolutions during the three-layer three-track PBF process are comprehensively reproduced, including grain nucleation and growth in molten pools, epitaxial growth from powder particles, substrate and previous tracks, grain re-melting and re-growth in overlapping zones, and grain coarsening in heat-affected zones. A validation experiment has been carried out, showing that the simulation results are consistent with the experimental results in the molten pool and grain morphologies. Furthermore, the grain refinement by adding nanoparticles is preliminarily reproduced and compared against the experimental result in literature.


2010 ◽  
Vol 97-101 ◽  
pp. 3769-3772 ◽  
Author(s):  
Chang Sheng Zhu ◽  
Jun Wei Wang

Based on a thin interface limit 3D phase-field model by coupled the anisotropy of interfacial energy and self-designed AADCR to improve on the computational methods for solving phase-field, 3D dendritic growth in pure undercooled melt is implemented successfully. The simulation authentically recreated the 3D dendritic morphological fromation, and receives the dendritic growth rule being consistent with crystallization mechanism. An example indicates that AADCR can decreased 70% computational time compared with not using algorithms for a 3D domain of size 300×300×300 grids, at the same time, the accelerated algorithms’ computed precision is higher and the redundancy is small, therefore, the accelerated method is really an effective method.


Author(s):  
T. Philippe ◽  
H. Henry ◽  
M. Plapp

At equilibrium, the shape of a strongly anisotropic crystal exhibits corners when for some orientations the surface stiffness is negative. In the sharp-interface problem, the surface free energy is traditionally augmented with a curvature-dependent term in order to round the corners and regularize the dynamic equations that describe the motion of such interfaces. In this paper, we adopt a diffuse interface description and present a phase-field model for strongly anisotropic crystals that is regularized using an approximation of the Willmore energy. The Allen–Cahn equation is employed to model kinetically controlled crystal growth. Using the method of matched asymptotic expansions, it is shown that the model converges to the sharp-interface theory proposed by Herring. Then, the stress tensor is used to derive the force acting on the diffuse interface and to examine the properties of a corner at equilibrium. Finally, the coarsening dynamics of the faceting instability during growth is investigated. Phase-field simulations reveal the existence of a parabolic regime, with the mean facet length evolving in t , with t the time, as predicted by the sharp-interface theory. A specific coarsening mechanism is observed: a hill disappears as the two neighbouring valleys merge.


Sign in / Sign up

Export Citation Format

Share Document