Retracted: Naive Credal Classifier for Uncertain Data Classification

Author(s):  
S. Sai Satyanarayana Reddy ◽  
G. V. Suresh ◽  
T. Raghunadha Reddy ◽  
B. Vishnu Vardhan

Some true applications, for example, content arrangement and sub-cell confinement of protein successions, include multi-mark grouping with imbalanced information. Different types of traditional approaches are introduced to describe the relation of hubristic and undertaking formations, classification of different attributes with imbalanced for different uncertain data sets. Here this addresses the issues by utilizing the min-max particular system. The min-max measured system can break down a multi-mark issue into a progression of little two-class sub-issues, which would then be able to be consolidated by two straightforward standards. Additionally present a few decay procedures to improve the presentation of min-max particular systems. Trial results on sub-cellular restriction demonstrate that our strategy has preferable speculation execution over customary SVMs in settling the multi-name and imbalanced information issues. In addition, it is additionally a lot quicker than customary SVMs


Filomat ◽  
2018 ◽  
Vol 32 (5) ◽  
pp. 1917-1930 ◽  
Author(s):  
Lei Shi ◽  
Qiguo Duan ◽  
Juanjuan Zhang ◽  
Lei Xi ◽  
Hongbo Qiao ◽  
...  

Agricultural data classification attracts more and more attention in the research area of intelligent agriculture. As a kind of important machine learning methods, ensemble learning uses multiple base classifiers to deal with classification problems. The rough set theory is a powerful mathematical approach to process unclear and uncertain data. In this paper, a rough set based ensemble learning algorithm is proposed to classify the agricultural data effectively and efficiently. An experimental comparison of different algorithms is conducted on four agricultural datasets. The results of experiment indicate that the proposed algorithm improves performance obviously.


2017 ◽  
Vol 230 ◽  
pp. 143-151 ◽  
Author(s):  
Behnam Tavakkol ◽  
Myong Kee Jeong ◽  
Susan L. Albin

Sign in / Sign up

Export Citation Format

Share Document