Global Exponential Stability in the Mean Square of Stochastic Cohen-Grossberg Neural Networks with Time-Varying and Continuous Distributed Delays

Author(s):  
Tian Liang ◽  
Yongqing Yang ◽  
Manfeng Hu ◽  
Yang Liu ◽  
Li Li
Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaohui Xu ◽  
Jiye Zhang ◽  
Quan Xu ◽  
Zilong Chen ◽  
Weifan Zheng

This paper studies the global exponential stability for a class of impulsive disturbance complex-valued Cohen-Grossberg neural networks with both time-varying delays and continuously distributed delays. Firstly, the existence and uniqueness of the equilibrium point of the system are analyzed by using the corresponding property of M-matrix and the theorem of homeomorphism mapping. Secondly, the global exponential stability of the equilibrium point of the system is studied by applying the vector Lyapunov function method and the mathematical induction method. The established sufficient conditions show the effects of both delays and impulsive strength on the exponential convergence rate. The obtained results in this paper are with a lower level of conservatism in comparison with some existing ones. Finally, three numerical examples with simulation results are given to illustrate the correctness of the proposed results.


2013 ◽  
Vol 760-762 ◽  
pp. 1742-1747
Author(s):  
Jin Fang Han

This paper is concerned with the mean-square exponential stability analysis problem for a class of stochastic interval cellular neural networks with time-varying delay. By using the stochastic analysis approach, employing Lyapunov function and norm inequalities, several mean-square exponential stability criteria are established in terms of the formula and Razumikhin theorem to guarantee the stochastic interval delayed cellular neural networks to be mean-square exponential stable. Some recent results reported in the literatures are generalized. A kind of equivalent description for this stochastic interval cellular neural networks with time-varying delay is also given.


Sign in / Sign up

Export Citation Format

Share Document