scholarly journals Impulsive Disturbances on the Dynamical Behavior of Complex-Valued Cohen-Grossberg Neural Networks with Both Time-Varying Delays and Continuously Distributed Delays

Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaohui Xu ◽  
Jiye Zhang ◽  
Quan Xu ◽  
Zilong Chen ◽  
Weifan Zheng

This paper studies the global exponential stability for a class of impulsive disturbance complex-valued Cohen-Grossberg neural networks with both time-varying delays and continuously distributed delays. Firstly, the existence and uniqueness of the equilibrium point of the system are analyzed by using the corresponding property of M-matrix and the theorem of homeomorphism mapping. Secondly, the global exponential stability of the equilibrium point of the system is studied by applying the vector Lyapunov function method and the mathematical induction method. The established sufficient conditions show the effects of both delays and impulsive strength on the exponential convergence rate. The obtained results in this paper are with a lower level of conservatism in comparison with some existing ones. Finally, three numerical examples with simulation results are given to illustrate the correctness of the proposed results.

2009 ◽  
Vol 19 (10) ◽  
pp. 3397-3406
Author(s):  
YUNQUAN KE ◽  
CHUNFANG MIAO

In this paper, the global exponential stability of Chua's reaction–diffusion CNN system is investigated. For this system, some sufficient conditions ensuring the existence and global exponential stability of the equilibrium point is derived by using homeomorphism mapping, the property of coefficient matrix and analytical techniques. Finally, three illustrative examples are given to show the effectiveness of our results.


2004 ◽  
Vol 14 (05) ◽  
pp. 337-345 ◽  
Author(s):  
ZHIGANG ZENG ◽  
DE-SHUANG HUANG ◽  
ZENGFU WANG

This paper presents new theoretical results on global exponential stability of cellular neural networks with time-varying delays. The stability conditions depend on external inputs, connection weights and delays of cellular neural networks. Using these results, global exponential stability of cellular neural networks can be derived, and the estimate for location of equilibrium point can also be obtained. Finally, the simulating results demonstrate the validity and feasibility of our proposed approach.


2010 ◽  
Vol 20 (05) ◽  
pp. 1541-1549 ◽  
Author(s):  
MAN-CHUN TAN ◽  
YAN ZHANG ◽  
WEN-LI SU ◽  
YU-NONG ZHANG

Some sufficient conditions to ensure the existence, uniqueness and global exponential stability of the equilibrium point of cellular neural networks with variable delays are derived. These results extend and improve the existing ones in the literature. Two illustrative examples are given to demonstrate the effectiveness of our results.


2014 ◽  
Vol 2014 ◽  
pp. 1-17
Author(s):  
Yongkun Li ◽  
Lijie Sun ◽  
Li Yang

By using the fixed point theorem and constructing a Lyapunov functional, we establish some sufficient conditions on the existence, uniqueness, and exponential stability of equilibrium point for a class of fuzzy BAM neural networks with infinitely distributed delays and impulses on time scales. We also present a numerical example to show the feasibility of obtained results. Our example also shows that the described time and continuous neural time networks have the same dynamic behaviours for the stability.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Qiming Liu ◽  
Rui Xu

A class of Cohen-Grossberg-type BAM neural networks with distributed delays and impulses are investigated in this paper. Sufficient conditions to guarantee the uniqueness and global exponential stability of the periodic solutions of such networks are established by using suitable Lyapunov function, the properties ofM-matrix, and some suitable mathematical transformation. The results in this paper improve the earlier publications.


2011 ◽  
Vol 48 (1) ◽  
pp. 1-13
Author(s):  
Haydar Akça ◽  
Valéry Covachev

Abstract We study impulsive Cohen-Grossberg neural networks with S-type distributed delays. This type of delays in the presence of impulses is more general than the usual types of delays studied in the literature. Using analysis techniques we prove the existence of a unique equilibrium point. By means of simple and efficient Lyapunov functions we present some sufficient conditions for the exponential stability of the equilibrium.


2011 ◽  
Vol 2011 ◽  
pp. 1-23
Author(s):  
R. Raja ◽  
R. Sakthivel ◽  
S. Marshal Anthoni

This paper deals with the stability analysis problem for a class of discrete-time stochastic BAM neural networks with discrete and distributed time-varying delays. By constructing a suitable Lyapunov-Krasovskii functional and employing M-matrix theory, we find some sufficient conditions ensuring the global exponential stability of the equilibrium point for stochastic BAM neural networks with time-varying delays. The conditions obtained here are expressed in terms of LMIs whose feasibility can be easily checked by MATLAB LMI Control toolbox. A numerical example is presented to show the effectiveness of the derived LMI-based stability conditions.


Sign in / Sign up

Export Citation Format

Share Document