Scheduling Problems with Variable Job Processing Times

2013 ◽  
pp. 217-260
Author(s):  
Alessandro Agnetis ◽  
Jean-Charles Billaut ◽  
Stanisław Gawiejnowicz ◽  
Dario Pacciarelli ◽  
Ameur Soukhal
2014 ◽  
Vol 624 ◽  
pp. 675-680
Author(s):  
Yu Fang Zhao

We studied single machine scheduling problems in which the jobs need to be delivered to customers after processing. It is assumed that the delivery times are proportional to the length of the already processed jobs, and a job's processing time depended on its position in a sequence. The objective functions include total earliness, the weighted number of tardy jobs and the cost of due date assignment. We analyzed these problems with two different due date assignment methods and conclude that the problems are polynomial time solvable.


2015 ◽  
Vol 3 (1) ◽  
pp. 68-76
Author(s):  
Guiqing Liu ◽  
Kai Li ◽  
Bayi Cheng

AbstractThis paper considers several parallel machine scheduling problems with controllable processing times, in which the goal is to minimize the makespan. Preemption is allowed. The processing times of the jobs can be compressed by some extra resources. Three resource use models are considered. If the jobs are released at the same time, the problems under all the three models can be solved in a polynomial time. The authors give the polynomial algorithm. When the jobs are not released at the same time, if all the resources are given at time zero, or the remaining resources in the front stages can be used to the next stages, the offline problems can be solved in a polynomial time, but the online problems have no optimal algorithm. If the jobs have different release dates, and the remaining resources in the front stages can not be used in the next stages, both the offline and online problems can be solved in a polynomial time.


1992 ◽  
Vol 29 (3) ◽  
pp. 667-681 ◽  
Author(s):  
Cheng-Shang Chang ◽  
Xiuli Chao ◽  
Michael Pinedo ◽  
Richard Weber

We consider scheduling problems with m machines in parallel and n jobs. The machines are subject to breakdown and repair. Jobs have exponentially distributed processing times and possibly random release dates. For cost functions that only depend on the set of uncompleted jobs at time t we provide necessary and sufficient conditions for the LEPT rule to minimize the expected cost at all t within the class of preemptive policies. This encompasses results that are known for makespan, and provides new results for the work remaining at time t. An application is that if the cµ rule has the same priority assignment as the LEPT rule then it minimizes the expected weighted number of jobs in the system for all t. Given appropriate conditions, we also show that the cµ rule minimizes the expected value of other objective functions, such as weighted sum of job completion times, weighted number of late jobs, or weighted sum of job tardinesses, when jobs have a common random due date.


2007 ◽  
Vol 24 (02) ◽  
pp. 245-261 ◽  
Author(s):  
JI-BO WANG ◽  
T. C. EDWIN CHENG

This paper deals with the machine scheduling problems with the effects of deterioration and learning. In this model the processing times of jobs are defined as functions of their starting times and positions in a sequence. We introduce polynomial solutions for some single machine problems and flow shop problems. The performance measures include makespan, total completion time, total weighted completion time, and maximum lateness.


Sign in / Sign up

Export Citation Format

Share Document