scholarly journals Linking Weak and Strong Sustainability Indicators: The Case of Global Warming

Author(s):  
Klaus Rennings ◽  
Olav Hohmeyer
1996 ◽  
Vol 1 (1) ◽  
pp. 85-101 ◽  
Author(s):  
David Pearce ◽  
Kirk Hamilton ◽  
Giles Atkinson

ABSTRACTThe search for sustainability indicators should be guided by a theory of sustainable development (SD). In this paper we investigate two such theoretical frameworks and the indicators that they suggest. Indicators associated with weak sustainability are characterized by aggregative indicators such as green national income. We conclude, however, that a more promising offshoot of green accounting is measures of genuine savings (i.e. savings adjusted for loss of assets). To achieve SD, genuine savings rates must not be persistently negative. Strong sustainability indicators accord a more central role to the conservation of critical natural assets within the broader goal of prudently managing a nation's portfolio of assets over time. We discuss two approaches—carrying capacity and resilience—and conclude that, while measures of resilience are potentially attractive, more research is required regarding the resilience–SD link. However, an important conclusion that we can make is that, even in an economy operating under a strong sustainability regime, genuine savings are still key indicators of SD and are complementary to measures of changes in stocks of critical natural assets.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


Author(s):  
John Houghton
Keyword(s):  

2011 ◽  
Author(s):  
David P. Nalbone ◽  
Amanda Tuohy ◽  
Kelly Jerome ◽  
Jeremy Boss ◽  
Andrew Fentress ◽  
...  

2008 ◽  
Author(s):  
Michaela Huber ◽  
Leaf Van Boven ◽  
Joshua A. Morris

Sign in / Sign up

Export Citation Format

Share Document