Convolution Operators in Spaces of Nuclearly Entire Functions on a Banach Space

Author(s):  
Leopoldo Nachbin
Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 150
Author(s):  
Andriy Zagorodnyuk ◽  
Anna Hihliuk

In the paper we establish some conditions under which a given sequence of polynomials on a Banach space X supports entire functions of unbounded type, and construct some counter examples. We show that if X is an infinite dimensional Banach space, then the set of entire functions of unbounded type can be represented as a union of infinite dimensional linear subspaces (without the origin). Moreover, we show that for some cases, the set of entire functions of unbounded type generated by a given sequence of polynomials contains an infinite dimensional algebra (without the origin). Some applications for symmetric analytic functions on Banach spaces are obtained.


2005 ◽  
Vol 48 (2) ◽  
pp. 161-174 ◽  
Author(s):  
Jorge J. Betancor

AbstractIn this paper we study Hankel transforms and Hankel convolution operators on spaces of entire functions of finite order and their duals.


2020 ◽  
Vol 126 (2) ◽  
pp. 339-366
Author(s):  
Heybetkulu Mustafayev

Let $G$ be a locally compact abelian group and let $M(G)$ be the measure algebra of $G$. A measure $\mu \in M(G)$ is said to be power bounded if $\sup _{n\geq 0}\lVert \mu ^{n} \rVert _{1}<\infty $. Let $\mathbf {T} = \{ T_{g}:g\in G\}$ be a bounded and continuous representation of $G$ on a Banach space $X$. For any $\mu \in M(G)$, there is a bounded linear operator on $X$ associated with µ, denoted by $\mathbf {T}_{\mu }$, which integrates $T_{g}$ with respect to µ. In this paper, we study norm and almost everywhere behavior of the sequences $\{ \mathbf {T}_{\mu }^{n}x\}$ $(x\in X)$ in the case when µ is power bounded. Some related problems are also discussed.


2016 ◽  
Vol 76 (1) ◽  
pp. 141-158 ◽  
Author(s):  
Vinicius V. Favaro ◽  
Jorge Mujica

Author(s):  
I. Alonso-Mallo ◽  
C. Palencia

We consider convolution operators arising in the study of abstract initial boundary value problems. These operators are of the formwhere {S(t)}t ≧0 is a C0-semigroup in a Banach space X,, with infinitesimal generator A0,: D(A0), ⊂ X, → X, and K(z): Y → X is a linxear, continuous mapping defined in another Banach space Y., We study the continuity of T between the spaces Lp([0, + ∞), Y), and Lq([0, + ∞), X), 1 ≦ p, q, ≦ + ∞. We give several examples of the applicability of the results to some familiar initial boundary value problems, including both parabolic and hyperbolic cases.


2009 ◽  
Vol 20 (4) ◽  
pp. 483-489 ◽  
Author(s):  
J.M. Ansemil ◽  
R.M. Aron ◽  
S. Ponte

2021 ◽  
Vol 56 (1) ◽  
pp. 106-112
Author(s):  
S.I. Halushchak

The theory of analytic functions is an important section of nonlinear functional analysis.In many modern investigations topological algebras of analytic functions and spectra of suchalgebras are studied. In this work we investigate the properties of the topological algebras of entire functions,generated by countable sets of homogeneous polynomials on complex Banach spaces. Let $X$ and $Y$ be complex Banach spaces. Let $\mathbb{A}= \{A_1, A_2, \ldots, A_n, \ldots\}$ and $\mathbb{P}=\{P_1, P_2,$ \ldots, $P_n, \ldots \}$ be sequences of continuous algebraically independent homogeneous polynomials on spaces $X$ and $Y$, respectively, such that $\|A_n\|_1=\|P_n\|_1=1$ and $\deg A_n=\deg P_n=n,$ $n\in \mathbb{N}.$ We consider the subalgebras $H_{b\mathbb{A}}(X)$ and $H_{b\mathbb{P}}(Y)$ of the Fr\'{e}chet algebras $H_b(X)$ and $H_b(Y)$ of entire functions of bounded type, generated by the sets $\mathbb{A}$ and $\mathbb{P}$, respectively. It is easy to see that $H_{b\mathbb{A}}(X)$ and $H_{b\mathbb{P}}(Y)$ are the Fr\'{e}chet algebras as well. In this paper we investigate conditions of isomorphism of the topological algebras $H_{b\mathbb{A}}(X)$ and $H_{b\mathbb{P}}(Y).$ We also present some applications for algebras of symmetric analytic functions of bounded type. In particular, we consider the subalgebra $H_{bs}(L_{\infty})$ of entire functions of bounded type on $L_{\infty}[0,1]$ which are symmetric, i.e. invariant with respect to measurable bijections of $[0,1]$ that preserve the measure. We prove that$H_{bs}(L_{\infty})$ is isomorphic to the algebra of all entire functions of bounded type, generated by countable set of homogeneous polynomials on complex Banach space $\ell_{\infty}.$


Sign in / Sign up

Export Citation Format

Share Document