scholarly journals Isomorphisms of some algebras of analytic functions of bounded type on Banach spaces

2021 ◽  
Vol 56 (1) ◽  
pp. 106-112
Author(s):  
S.I. Halushchak

The theory of analytic functions is an important section of nonlinear functional analysis.In many modern investigations topological algebras of analytic functions and spectra of suchalgebras are studied. In this work we investigate the properties of the topological algebras of entire functions,generated by countable sets of homogeneous polynomials on complex Banach spaces. Let $X$ and $Y$ be complex Banach spaces. Let $\mathbb{A}= \{A_1, A_2, \ldots, A_n, \ldots\}$ and $\mathbb{P}=\{P_1, P_2,$ \ldots, $P_n, \ldots \}$ be sequences of continuous algebraically independent homogeneous polynomials on spaces $X$ and $Y$, respectively, such that $\|A_n\|_1=\|P_n\|_1=1$ and $\deg A_n=\deg P_n=n,$ $n\in \mathbb{N}.$ We consider the subalgebras $H_{b\mathbb{A}}(X)$ and $H_{b\mathbb{P}}(Y)$ of the Fr\'{e}chet algebras $H_b(X)$ and $H_b(Y)$ of entire functions of bounded type, generated by the sets $\mathbb{A}$ and $\mathbb{P}$, respectively. It is easy to see that $H_{b\mathbb{A}}(X)$ and $H_{b\mathbb{P}}(Y)$ are the Fr\'{e}chet algebras as well. In this paper we investigate conditions of isomorphism of the topological algebras $H_{b\mathbb{A}}(X)$ and $H_{b\mathbb{P}}(Y).$ We also present some applications for algebras of symmetric analytic functions of bounded type. In particular, we consider the subalgebra $H_{bs}(L_{\infty})$ of entire functions of bounded type on $L_{\infty}[0,1]$ which are symmetric, i.e. invariant with respect to measurable bijections of $[0,1]$ that preserve the measure. We prove that$H_{bs}(L_{\infty})$ is isomorphic to the algebra of all entire functions of bounded type, generated by countable set of homogeneous polynomials on complex Banach space $\ell_{\infty}.$

2019 ◽  
Vol 11 (1) ◽  
pp. 42-47 ◽  
Author(s):  
I.V. Chernega ◽  
A.V. Zagorodnyuk

Let $\{P_n\}_{n=0}^\infty$ be a sequenceof continuous algebraically independent  homogeneous polynomials on a complex Banach space $X.$ We consider the following question: Under which conditions polynomials $\{P_1^{k_1}\cdots P_n^{k_n}\}$ form a Schauder (perhaps absolute) basis in the minimal subalgebra of entire functions of bounded type on $X$ which contains the sequence $\{P_n\}_{n=0}^\infty$? In the paper we study the following examples: when $P_n$ are coordinate functionals on $c_0,$ and when $P_n$ are symmetric polynomials on $\ell_1$ and on $L_\infty[0,1].$ We can see that for some cases $\{P_1^{k_1}\cdots P_n^{k_n}\}$ is a Schauder basis which is not absolute but for some cases it is absolute.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 150
Author(s):  
Andriy Zagorodnyuk ◽  
Anna Hihliuk

In the paper we establish some conditions under which a given sequence of polynomials on a Banach space X supports entire functions of unbounded type, and construct some counter examples. We show that if X is an infinite dimensional Banach space, then the set of entire functions of unbounded type can be represented as a union of infinite dimensional linear subspaces (without the origin). Moreover, we show that for some cases, the set of entire functions of unbounded type generated by a given sequence of polynomials contains an infinite dimensional algebra (without the origin). Some applications for symmetric analytic functions on Banach spaces are obtained.


2019 ◽  
Vol 11 (1) ◽  
pp. 158-162
Author(s):  
H.M. Pryimak

It is known due to R. Aron, B. Cole and T. Gamelin that every complex homomorphism of the algebra of entire functions of bounded type on a Banach space $X$ can be approximated in some sense by a net of point valued homomorphism. In this paper we consider the question about a generalization of this result for the case of homomorphisms to any commutative Banach algebra $A.$ We obtained some positive results if $A$ is the algebra of uniformly continuous analytic functions on the unit ball of $X.$


2019 ◽  
Vol 11 (2) ◽  
pp. 311-320 ◽  
Author(s):  
S.I. Halushchak

In this work, we investigate the properties of the topological algebra of entire functions of bounded type, generated by a countable set of homogeneous polynomials on a complex Banach space. Let $X$ be a complex Banach space. We consider a subalgebra $H_{b\mathbb{P}}(X)$ of the Fréchet algebra of entire functions of bounded type $H_b(X),$ generated by a countable set of algebraically independent homogeneous polynomials $\mathbb{P}.$ We show that each term of the Taylor series expansion of entire function, which belongs to the algebra $H_{b\mathbb{P}}(X),$ is an algebraic combination of elements of $\mathbb{P}.$ We generalize the theorem for computing the radius function of a linear functional on the case of arbitrary subalgebra of the algebra $H_b(X)$ on the space $X.$ Every continuous linear multiplicative functional, acting from $H_{b\mathbb{P}}(X)$ to $\mathbb{C}$ is uniquely determined by the sequence of its values on the elements of $\mathbb{P}.$ Consequently, there is a bijection between the spectrum (the set of all continuous linear multiplicative functionals) of the algebra $H_{b\mathbb{P}}(X)$ and some set of sequences of complex numbers. We prove the upper estimate for sequences of this set. Also we show that every function that belongs to the algebra $H_{b\mathbb{P}}(X),$ where $X$ is a closed subspace of the space $\ell_{\infty}$ such that $X$ contains the space $c_{00},$ can be uniquely analytically extended to $\ell_{\infty}$ and algebras $H_{b\mathbb{P}}(X)$ and $H_{b\mathbb{P}}(\ell)$ are isometrically isomorphic. We describe the spectrum of the algebra $H_{b\mathbb{P}}(X)$ in this case for some special form of the set $\mathbb{P}.$ Results of the paper can be used for investigations of the algebra of symmetric analytic functions on Banach spaces.


2021 ◽  
Vol 13 (2) ◽  
pp. 340-351
Author(s):  
T.V. Vasylyshyn

The work is devoted to the study of Fréchet algebras of symmetric (invariant under the composition of every of components of its argument with any measure preserving bijection of the domain of components of the argument) analytic functions on Cartesian powers of complex Banach spaces of Lebesgue integrable in a power $p\in [1,+\infty)$ complex-valued functions on the segment $[0,1]$ and on the semi-axis. We show that the Fréchet algebra of all symmetric analytic entire complex-valued functions of bounded type on the $n$th Cartesian power of the complex Banach space $L_p[0,1]$ of all Lebesgue integrable in a power $p\in [1,+\infty)$ complex-valued functions on the segment $[0,1]$ is isomorphic to the Fréchet algebra of all analytic entire functions on $\mathbb C^m,$ where $m$ is the cardinality of the algebraic basis of the algebra of all symmetric continuous complex-valued polynomials on this Cartesian power. The analogical result for the Fréchet algebra of all symmetric analytic entire complex-valued functions of bounded type on the $n$th Cartesian power of the complex Banach space $L_p[0,+\infty)$ of all Lebesgue integrable in a power $p\in [1,+\infty)$ complex-valued functions on the semi-axis $[0,+\infty)$ is proved.


2006 ◽  
Vol 49 (1) ◽  
pp. 39-52 ◽  
Author(s):  
Yun Sung Choi ◽  
Domingo Garcia ◽  
Sung Guen Kim ◽  
Manuel Maestre

AbstractIn this paper, we introduce the polynomial numerical index of order $k$ of a Banach space, generalizing to $k$-homogeneous polynomials the ‘classical’ numerical index defined by Lumer in the 1970s for linear operators. We also prove some results. Let $k$ be a positive integer. We then have the following:(i) $n^{(k)}(C(K))=1$ for every scattered compact space $K$.(ii) The inequality $n^{(k)}(E)\geq k^{k/(1-k)}$ for every complex Banach space $E$ and the constant $k^{k/(1-k)}$ is sharp.(iii) The inequalities$$ n^{(k)}(E)\leq n^{(k-1)}(E)\leq\frac{k^{(k+(1/(k-1)))}}{(k-1)^{k-1}}n^{(k)}(E) $$for every Banach space $E$.(iv) The relation between the polynomial numerical index of $c_0$, $l_1$, $l_{\infty}$ sums of Banach spaces and the infimum of the polynomial numerical indices of them.(v) The relation between the polynomial numerical index of the space $C(K,E)$ and the polynomial numerical index of $E$.(vi) The inequality $n^{(k)}(E^{**})\leq n^{(k)}(E)$ for every Banach space $E$.Finally, some results about the numerical radius of multilinear maps and homogeneous polynomials on $C(K)$ and the disc algebra are given.


1999 ◽  
Vol 42 (2) ◽  
pp. 139-148 ◽  
Author(s):  
José Bonet ◽  
Paweł Dománski ◽  
Mikael Lindström

AbstractEvery weakly compact composition operator between weighted Banach spaces of analytic functions with weighted sup-norms is compact. Lower and upper estimates of the essential norm of continuous composition operators are obtained. The norms of the point evaluation functionals on the Banach space are also estimated, thus permitting to get new characterizations of compact composition operators between these spaces.


2019 ◽  
Vol 38 (3) ◽  
pp. 133-140
Author(s):  
Abdelaziz Tajmouati ◽  
Abdeslam El Bakkali ◽  
Ahmed Toukmati

In this paper we introduce and study the M-hypercyclicity of strongly continuous cosine function on separable complex Banach space, and we give the criteria for cosine function to be M-hypercyclic. We also prove that every separable infinite dimensional complex Banach space admits a uniformly continuous cosine function.


2002 ◽  
Vol 54 (6) ◽  
pp. 1165-1186 ◽  
Author(s):  
Oscar Blasco ◽  
José Luis Arregui

AbstractLet X be a complex Banach space and let Bp(X) denote the vector-valued Bergman space on the unit disc for 1 ≤ p < ∞. A sequence (Tn)n of bounded operators between two Banach spaces X and Y defines a multiplier between Bp(X) and Bq(Y) (resp. Bp(X) and lq(Y)) if for any function we have that belongs to Bq(Y) (resp. (Tn(xn))n ∈ lq(Y)). Several results on these multipliers are obtained, some of them depending upon the Fourier or Rademacher type of the spaces X and Y. New properties defined by the vector-valued version of certain inequalities for Taylor coefficients of functions in Bp(X) are introduced.


Axioms ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 133
Author(s):  
Andriy Zagorodnyuk ◽  
Anna Hihliuk

In this paper we investigate analytic functions of unbounded type on a complex infinite dimensional Banach space X. The main question is: under which conditions is there an analytic function of unbounded type on X such that its Taylor polynomials are in prescribed subspaces of polynomials? We obtain some sufficient conditions for a function f to be of unbounded type and show that there are various subalgebras of polynomials that support analytic functions of unbounded type. In particular, some examples of symmetric analytic functions of unbounded type are constructed.


Sign in / Sign up

Export Citation Format

Share Document