scholarly journals The Implications of Diverse Applications and Scalable Data Sets in Benchmarking Big Data Systems

Author(s):  
Zhen Jia ◽  
Runlin Zhou ◽  
Chunge Zhu ◽  
Lei Wang ◽  
Wanling Gao ◽  
...  
2017 ◽  
Vol 27 (2) ◽  
pp. 385-399 ◽  
Author(s):  
Laura Vasiliu ◽  
Florin Pop ◽  
Catalin Negru ◽  
Mariana Mocanu ◽  
Valentin Cristea ◽  
...  

AbstractWith the rapid evolution of the distributed computing world in the last few years, the amount of data created and processed has fast increased to petabytes or even exabytes scale. Such huge data sets need data-intensive computing applications and impose performance requirements to the infrastructures that support them, such as high scalability, storage, fault tolerance but also efficient scheduling algorithms. This paper focuses on providing a hybrid scheduling algorithm for many task computing that addresses big data environments with few penalties, taking into consideration the deadlines and satisfying a data dependent task model. The hybrid solution consists of several heuristics and algorithms (min-min, min-max and earliest deadline first) combined in order to provide a scheduling algorithm that matches our problem. The experimental results are conducted by simulation and prove that the proposed hybrid algorithm behaves very well in terms of meeting deadlines.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammed Anouar Naoui ◽  
Brahim Lejdel ◽  
Mouloud Ayad ◽  
Abdelfattah Amamra ◽  
Okba kazar

PurposeThe purpose of this paper is to propose a distributed deep learning architecture for smart cities in big data systems.Design/methodology/approachWe have proposed an architectural multilayer to describe the distributed deep learning for smart cities in big data systems. The components of our system are Smart city layer, big data layer, and deep learning layer. The Smart city layer responsible for the question of Smart city components, its Internet of things, sensors and effectors, and its integration in the system, big data layer concerns data characteristics 10, and its distribution over the system. The deep learning layer is the model of our system. It is responsible for data analysis.FindingsWe apply our proposed architecture in a Smart environment and Smart energy. 10; In a Smart environment, we study the Toluene forecasting in Madrid Smart city. For Smart energy, we study wind energy foresting in Australia. Our proposed architecture can reduce the time of execution and improve the deep learning model, such as Long Term Short Memory10;.Research limitations/implicationsThis research needs the application of other deep learning models, such as convolution neuronal network and autoencoder.Practical implicationsFindings of the research will be helpful in Smart city architecture. It can provide a clear view into a Smart city, data storage, and data analysis. The 10; Toluene forecasting in a Smart environment can help the decision-maker to ensure environmental safety. The Smart energy of our proposed model can give a clear prediction of power generation.Originality/valueThe findings of this study are expected to contribute valuable information to decision-makers for a better understanding of the key to Smart city architecture. Its relation with data storage, processing, and data analysis.


Sign in / Sign up

Export Citation Format

Share Document