Monomial Phase: A Matrix Representation of Local Phase

Author(s):  
Hans Knutsson ◽  
Carl-Fredrik Westin
2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Qinghui Zhang ◽  
Junqiu Li ◽  
Zhenping Qiang ◽  
Libo He

Estimating the motions of the common carotid artery wall plays a very important role in early diagnosis of the carotid atherosclerotic disease. However, the disturbances caused by either the instability of the probe operator or the breathing of subjects degrade the estimation accuracy of arterial wall motion when performing speckle tracking on the B-mode ultrasound images. In this paper, we propose a global registration method to suppress external disturbances before motion estimation. The local vector images, transformed from B-mode images, were used for registration. To take advantage of both the structural information from the local phase and the geometric information from the local orientation, we proposed a confidence coefficient to combine them two. Furthermore, we altered the speckle reducing anisotropic diffusion filter to improve the performance of disturbance suppression. We compared this method with schemes of extracting wall displacement directly from B-mode or phase images. The results show that this scheme can effectively suppress the disturbances and significantly improve the estimation accuracy.


2020 ◽  
Vol 75 (6) ◽  
pp. 507-509 ◽  
Author(s):  
Günter Nimtz ◽  
Horst Aichmann

AbstractPresently, nerve pulse propagation is understood to take place by electric action pulses. The theoretical description is given by the Hodgkin-Huxley model. Recently, an alternative model was proclaimed, where signaling is carried out by acoustic solitons. The solitons are built by a local phase transition in the lyotropic liquid crystal (LLC) of a biologic membrane. We argue that the crystal structure arranging hydrogen bonds at the membrane surface do not allow such an acoustic soliton model. The bound water is a component of the LLC and the assumed phase transition represents a negative entropy step.


Author(s):  
Janis Köster ◽  
Mahdi Ghorbani-Asl ◽  
Hannu-Pekka Komsa ◽  
Tibor Lehnert ◽  
Silvan Kretschmer ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 86
Author(s):  
Qiaoling Chu ◽  
Lin Zhang ◽  
Tuo Xia ◽  
Peng Cheng ◽  
Jianming Zheng ◽  
...  

The relation between the microstructure and mechanical properties of the Fe–Nb dissimilar joint were investigated using nanoindentation. The weld metal consists mainly of Fe2Nb, α-Fe + Fe2Nb, Nb (s,s) and Fe7Nb6 phases. Radial cracks initiate from the corners of the impressions on the Fe2Nb phase (~20.5 GPa) when subjected to a peak load of 300 mN, whereas the fine lamellar structures (α-Fe + Fe2Nb) with an average hardness of 6.5 GPa are free from cracks. The calculated fracture toughness of the Fe2Nb intermetallics is 1.41 ± 0.53 MPam1/2. A simplified scenario of weld formation together with the thermal cycle is proposed to elaborate the way local phase determined the mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document