Numerical Methods for Eigenvalue and Control Problems

Author(s):  
Volker Mehrmann
Author(s):  
Saeed Ebrahimi ◽  
Jo´zsef Ko¨vecses

In this paper, we introduce a novel concept for parametric studies in multibody dynamics. This is based on a technique that makes it possible to perform a natural normalization of the dynamics in terms of inertial parameters. This normalization technique rises out from the underlying physical structure of the system, which is mathematically expressed in the form of eigenvalue problems. It leads to the introduction of the concept of dimensionless inertial parameters. This, in turn, makes the decomposition of the array of parameters possible for studying design and control problems where parameter estimation and sensitivity is of importance.


Author(s):  
Diane L. Peters ◽  
Panos Y. Papalambros ◽  
A. Galip Ulsoy

Optimization of smart products requires optimizing both the artifact design and its controller. The presence of coupling between the design and control problems is an important consideration in choosing the system optimization method. Several measures of coupling have been proposed based on different viewpoints of the system. In this paper, two measures of coupling, a vector based on optimality conditions and a matrix derived from an extension of the global sensitivity equations, are shown to be related under certain conditions and to be consistent in their coupling determination. The measures’ physical interpretation and relative ease of use are discussed using the example of a positioning gantry. A further relation is derived between one measure and a modified sequential formulation that would give results sufficiently close to the true solutions.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Yi Ren ◽  
Alparslan Emrah Bayrak ◽  
Panos Y. Papalambros

We compare the performance of human players against that of the efficient global optimization (EGO) algorithm for an NP-complete powertrain design and control problem. Specifically, we cast this optimization problem as an online competition and received 2391 game plays by 124 anonymous players during the first month from launch. We found that while only a small portion of human players can outperform the algorithm in the long term, players tend to formulate good heuristics early on that can be used to constrain the solution space. Such constraining of the search enhances algorithm efficiency, even for different game settings. These findings indicate that human-assisted computational searches are promising in solving comprehensible yet computationally hard optimal design and control problems, when human players can outperform the algorithm in a short term.


Author(s):  
Ye.I. Somov ◽  
◽  
S.A. Butyrin ◽  
S.Ye. Somov ◽  
◽  
...  

The control problems on a space robot during its approach to an information geostationary satellite are considered. The robot motion control system uses an electric propulsion system with 8 engines at the pulse-width modulation of their thrust values and a gyroscopic moment cluster based on 4 gyrodines with digital control. Numerical results are presented that demonstrate the effectiveness of the developed discrete guidance and control algorithms.


Sign in / Sign up

Export Citation Format

Share Document