Robust Multigrid Algorithms for 3D Elliptic Equations on Structured Grids

Author(s):  
R. S. Montero ◽  
M. Prieto ◽  
I. M. Llorente ◽  
F. Tirado
Author(s):  
С.И. Мартыненко

Сформулированы требования к вычислительным алгоритмам для перспективного программного обеспечения, устроенного по принципу "черного ящика" и предназначенного для математического моделирования в механике сплошных сред. Выполнен анализ прикладных свойств классических многосеточных методов и универсальной многосеточной технологии в рамках проблемы "универсальность-эффективность-параллелизм". Показано, что близкая к оптимальной трудоемкость при минимуме проблемно-зависимых компонентов и высокая эффективность параллелизма достижимы при использовании универсальной многосеточной технологии на глобально структурированных сетках. Применение неструктурированных сеток потребует определения двух проблемно-зависимых компонентов (межсеточных операторов), которые значительно влияют на трудоемкость алгоритма. A number of requirements are formulated to the numerical algorithms for black box software intended for mathematical modeling in continuum mechanics. An analysis of applied properties of the classical multigrid methods and robust multigrid technique in the framework of "robustness-efficiency-parallelism" problem is performed. It is shown that a close-to-optimal complexity with the least number of problem-dependent components and high parallel efficiency can be achieved with the robust multigrid technique on globally structured grids. Application of unstructured grids requires the accurate definition of two problem-dependent components (intergrid operators) that strongly affect on the complexity of an algorithm.


2010 ◽  
Vol 10 (1) ◽  
pp. 87-94 ◽  
Author(s):  
S.I. Martynenko

AbstractThe present paper discusses the parallelization of the robust multigrid technique (RMT) and the possible way of applying this to unstructured grids. As opposed to the classical multigrid methods, the RMT is a trivial method of parallelization on coarse grids independent of the smoothing iterations. Estimates of the minimum speed-up and parallelism efficiency are given. An almost perfect load balance is demonstrated in a 3D illustrative test. To overcome the geometric nature of the technique, the RMT is used as a preconditioner in solving PDEs on unstructured grids. The procedure of auxiliary structured grids generation is considered in details.


2020 ◽  
Vol 57 (1) ◽  
pp. 68-90 ◽  
Author(s):  
Tahir S. Gadjiev ◽  
Vagif S. Guliyev ◽  
Konul G. Suleymanova

Abstract In this paper, we obtain generalized weighted Sobolev-Morrey estimates with weights from the Muckenhoupt class Ap by establishing boundedness of several important operators in harmonic analysis such as Hardy-Littlewood operators and Calderon-Zygmund singular integral operators in generalized weighted Morrey spaces. As a consequence, a priori estimates for the weak solutions Dirichlet boundary problem uniformly elliptic equations of higher order in generalized weighted Sobolev-Morrey spaces in a smooth bounded domain Ω ⊂ ℝn are obtained.


Sign in / Sign up

Export Citation Format

Share Document