Formation of Micronuclei and Inhibition of Topoisomerase II in the Comet Assay in Mammalian Cells with Altered DNA Methylation

Author(s):  
H. Stopper ◽  
I. Eckert ◽  
P. Wagener ◽  
W. A. Schulz
2017 ◽  
Vol 58 (7) ◽  
pp. 508-521 ◽  
Author(s):  
Todd A. Townsend ◽  
Marcus C. Parrish ◽  
Bevin P. Engelward ◽  
Mugimane G. Manjanatha

2006 ◽  
Vol 40 (11) ◽  
pp. 1149-1154 ◽  
Author(s):  
Vanessa Pitozzi ◽  
Stefania Pallotta ◽  
Manuela Balzi ◽  
Marta Bucciolini ◽  
Aldo Becciolini ◽  
...  

2016 ◽  
Vol 57 (3) ◽  
pp. 312-317 ◽  
Author(s):  
Tomomi Kurashige ◽  
Mika Shimamura ◽  
Yuji Nagayama

Abstract The biological effect of ionizing radiation (IR) on genomic DNA is thought to be either direct or indirect; the latter is mediated by IR induction of free radicals and reactive oxygen species (ROS). This study was designed to evaluate the effect of N-acetyl-L-cysteine (NAC), a well-known ROS-scavenging antioxidant, on IR induction of genotoxicity, cytotoxicity and ROS production in mammalian cells, and aimed to clarify the conflicting data in previous publications. Although we clearly demonstrate the beneficial effect of NAC on IR-induced genotoxicity and cytotoxicity (determined using the micronucleus assay and cell viability/clonogenic assays), the data on NAC's effect on DNA double-strand break (DSB) formation were inconsistent in different assays. Specifically, mitigation of IR-induced DSBs by NAC was readily detected by the neutral comet assay, but not by the γH2AX or 53BP1 focus assays. NAC is a glutathione precursor and exerts its effect after conversion to glutathione, and presumably it has its own biological activity. Assuming that the focus assay reflects the biological responses to DSBs (detection and repair), while the comet assay reflects the physical status of genomic DNA, our results indicate that the comet assay could readily detect the antioxidant effect of NAC on DSB formation. However, NAC's biological effect might affect the detection of DSB repair by the focus assays. Our data illustrate that multiple parameters should be carefully used to analyze DNA damage when studying potential candidates for radioprotective compounds.


2014 ◽  
Vol 5 ◽  
Author(s):  
Angélique Lewies ◽  
Etresia Van Dyk ◽  
Johannes F. Wentzel ◽  
Pieter J. Pretorius

2006 ◽  
Vol 26 (19) ◽  
pp. 7224-7235 ◽  
Author(s):  
Choon Ping Tan ◽  
Sara Nakielny

ABSTRACT DNA methylation is vital for proper chromatin structure and function in mammalian cells. Genetic removal of the enzymes that catalyze DNA methylation results in defective imprinting, transposon silencing, X chromosome dosage compensation, and genome stability. This epigenetic modification is interpreted by methyl-DNA binding domain (MBD) proteins. MBD proteins respond to methylated DNA by recruiting histone deacetylases (HDAC) and other transcription repression factors to the chromatin. The MBD2 protein is dispensable for animal viability, but it is implicated in the genesis of colon tumors. Here we report that the MBD2 protein is controlled by arginine methylation. We identify the protein arginine methyltransferase enzymes that catalyze this modification and show that arginine methylation inhibits the function of MBD2. Arginine methylation of MBD2 reduces MBD2-methyl-DNA complex formation, reduces MBD2-HDAC repression complex formation, and impairs the transcription repression function of MBD2 in cells. Our report provides a molecular description of a potential regulatory mechanism for an MBD protein family member. It is the first to demonstrate that protein arginine methyltransferases participate in the DNA methylation system of chromatin control.


1993 ◽  
Vol 105 (2) ◽  
pp. 563-569 ◽  
Author(s):  
D.J. Clarke ◽  
R.T. Johnson ◽  
C.S. Downes

Yeast temperature-sensitive mutants of DNA topoisomerase II are incapable of chromosome condensation and anaphase chromatid segregation. In mammalian cells, topoisomerase II inhibitors such as etoposide (VP-16-123) have similar effects. Unfortunately, conclusions drawn from work with mammalian cells have been limited by the fact that the standard inhibitors of topoisomerase II also generate DNA strand breaks, which when produced by other agents (e.g. ionizing radiation) are known to affect progression into and through mitosis. Here we show that the anti-tumour agent ICRF-193, recently identified as a topoisomerase II inhibitor operating by a non-standard mechanism, generates neither covalent complexes between topoisomerase II and DNA, nor adjacent DNA strand breaks, in mitotic HeLa. However, the drug does prevent anaphase segregation in HeLa and PtK2 cells, with effects similar to those of etoposide. We therefore conclude that topoisomerase II function is required for anaphase chromosome segregation in mammalian cells, as it is in yeast.


Sign in / Sign up

Export Citation Format

Share Document