Knowledge Acquisition for Spatial Inference — The Case of Genetic Algorithms

Author(s):  
Yee Leung
1998 ◽  
Vol 37 (04/05) ◽  
pp. 327-333 ◽  
Author(s):  
F. Buekens ◽  
G. De Moor ◽  
A. Waagmeester ◽  
W. Ceusters

AbstractNatural language understanding systems have to exploit various kinds of knowledge in order to represent the meaning behind texts. Getting this knowledge in place is often such a huge enterprise that it is tempting to look for systems that can discover such knowledge automatically. We describe how the distinction between conceptual and linguistic semantics may assist in reaching this objective, provided that distinguishing between them is not done too rigorously. We present several examples to support this view and argue that in a multilingual environment, linguistic ontologies should be designed as interfaces between domain conceptualizations and linguistic knowledge bases.


1996 ◽  
Vol 47 (4) ◽  
pp. 550-561 ◽  
Author(s):  
Kathryn A Dowsland
Keyword(s):  

2018 ◽  
Vol 1 (1) ◽  
pp. 2-19
Author(s):  
Mahmood Sh. Majeed ◽  
Raid W. Daoud

A new method proposed in this paper to compute the fitness in Genetic Algorithms (GAs). In this new method the number of regions, which assigned for the population, divides the time. The fitness computation here differ from the previous methods, by compute it for each portion of the population as first pass, then the second pass begin to compute the fitness for population that lye in the portion which have bigger fitness value. The crossover and mutation and other GAs operator will do its work only for biggest fitness portion of the population. In this method, we can get a suitable and accurate group of proper solution for indexed profile of the photonic crystal fiber (PCF).


Sign in / Sign up

Export Citation Format

Share Document