Selected Technical Hydrogen Production Systems

1988 ◽  
pp. 209-248 ◽  
Author(s):  
W. Schnurnberger ◽  
W. Seeger ◽  
H. Steeb
2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Abdelhamid Mraoui ◽  
Abdallah Khellaf

Abstract In this work, the design of a hydrogen production system was optimized for Algiers in Algeria. The system produces hydrogen by electrolysis using a photovoltaic (PV) generator as a source of electricity. All the elements of the system have been modeled to take into account practical constraints. The cost of producing hydrogen has been minimized by varying the total power of the photovoltaic generator. An optimal ratio between the peak power of the PV array and the nominal power of the electrolyzer was determined. Photovoltaic module technology has been varied using a large database of electrical characteristics. It was noted that PV technology does not have a very significant impact on cost. The minimum cost is around 0.44$/N m3, and the power ratio in this case is 1.45. This results in a cost reduction of around 12% compared to a unit ratio. The power ratio and cost are linearly dependent. Only a small number of technologies give a relatively low cost of about 0.35$/N m3. These generators are interesting; however, we assumed an initial cost of $2.00/Wp for all technologies. In addition, it was noted that it is possible to increase hydrogen production by 10% by increasing the power of the photovoltaic generator, the extra cost in this case will only be 0.1%.


2020 ◽  
Vol 18 (6) ◽  
pp. 1951-1969 ◽  
Author(s):  
Mostafa Rezaei ◽  
Ali Mostafaeipour ◽  
Niloofar Jafari ◽  
Nafiseh Naghdi-Khozani ◽  
Ali Moftakharzadeh

Purpose Acute shortage of potable water and energy supplies is expected to raise in developing countries in the near future. One solid way to address these issues is to exploit renewable energy resources efficiently. Hence, this study aims to investigate wind and solar energy use in the coastal areas of southern Iran for renewable-powered seawater desalination and hydrogen production systems. Design/methodology/approach To accomplish the aforementioned purpose, five areas most prone to the problems in Iran, namely, Mahshahr, Jask and Chabahar ports and Kish and Hormoz islands were scrutinized. To ascertain the amount of wind and solar energy available in the areas, Weibull distribution function, Angstrom–Prescott equation and HOMER software were used. Findings The findings indicated that wind energy density in Kish was 2,014.86 (kWh/m2.yr) and solar energy density in Jask equaled to 2,255.7 (kWh/m2.yr) which possessed the best conditions among the areas under study. Moreover, three commercial wind turbines and three photovoltaic systems were examined for supplying energy needed by the water desalination and hydrogen production systems. The results showed that application of wind turbines with rated power of 660, 750 and 900 kWh in Kish could result in desalting 934,145, 1,263,339 and 2,000,450 (m3/yr) of seawater or producing 14,719, 20,896 and 31,521 (kg/yr) of hydrogen, respectively. Additionally, use of photovoltaic systems with efficiency of %14.4, %17.01 and %21.16 in Jask could desalinate 287, 444 and 464 (m3/yr) of seawater or generate 4.5, 7 and 7.3 (kg/yr) of hydrogen, respectively. Originality/value Compared to the huge extent of water shortage and environmental pollution, there has not been conducted enough studies to obtain broader view regarding use of renewable energies to solve these issues in Iran. Therefore, this study tries to close this gap and to give other developing nations the idea of water desalination and hydrogen production via renewable energies.


2011 ◽  
Vol 183-185 ◽  
pp. 193-196
Author(s):  
Yong Feng Li ◽  
Jing Wei Zhang ◽  
Wei Han ◽  
Jian Yu Yang ◽  
Yong Juan Zhang ◽  
...  

The paper not only reviews the progress of engineering and application on bio-hydrogen production, but also discusses characteristics, advantages and disadvantages of biological hydrogen production systems. Meanwhile, it mainly analyzes anaerobic fermentative bio-hydrogen production systems’ technological schemes, design strategies, engineering control parameters, fermentation control, fuel cell, technical means to increase hydrogen evolution and its rate. Under the guidance of the theory of ethanol-type fermentation, the fermentative bio-hydrogen production systems have been established in practice.


Sign in / Sign up

Export Citation Format

Share Document