On the Problem of Fast Random and Sequential Data Access in Shift Register Memories

Author(s):  
Werner Kluge
1993 ◽  
Vol 18 (4) ◽  
pp. 197-213
Author(s):  
Erhard Rahm ◽  
Donald Ferguson

2014 ◽  
Vol 513 (4) ◽  
pp. 042001
Author(s):  
Zbigniew Baranowski ◽  
Luca Canali ◽  
Eric Grancher

Author(s):  
Veit Köppen ◽  
Martin Schäler ◽  
David Broneske

With the ongoing increasing amount of data, these data have to be processed to gain new insights. Data mining techniques and user-driven OLAP are used to identify patterns or rules. Typical OLAP queries require database operations such as selections on ranges or projections. Similarly, data mining techniques require efficient support of these operations. One particularly challenging, yet important property, that an efficient data access has to support is multi-dimensionality. New techniques have been developed taking advantage of novel hardware environments including SIMD or main-memory usage. This includes sequential data access methods such SIMD, BitWeaving, or Column Imprints. New data structures have been also developed, including Sorted Projections or Elf, to address the features of modern hardware and multi-dimensional data access. In the context of multidimensional data access, the influence of modern hardware, including main-memory data access and SIMD instructions lead to new data access techniques. This chapter gives an overview on existing techniques and open potentials.


1997 ◽  
Vol 36 (04/05) ◽  
pp. 356-359 ◽  
Author(s):  
M. Sekine ◽  
M. Ogawa ◽  
T. Togawa ◽  
Y. Fukui ◽  
T. Tamura

Abstract:In this study we have attempted to classify the acceleration signal, while walking both at horizontal level, and upstairs and downstairs, using wavelet analysis. The acceleration signal close to the body’s center of gravity was measured while the subjects walked in a corridor and up and down a stairway. The data for four steps were analyzed and the Daubecies 3 wavelet transform was applied to the sequential data. The variables to be discriminated were the waveforms related to levels -4 and -5. The sum of the square values at each step was compared at levels -4 and -5. Downstairs walking could be discriminated from other types of walking, showing the largest value for level -5. Walking at horizontal level was compared with upstairs walking for level -4. It was possible to discriminate the continuous dynamic responses to walking by the wavelet transform.


Sign in / Sign up

Export Citation Format

Share Document