Mechanisms of de novo alanine synthesis in hypoxic heart muscle

Author(s):  
H. Taegtmeyer ◽  
M. Lesch
1977 ◽  
Vol 252 (14) ◽  
pp. 5010-5018
Author(s):  
H Taegtmeyer ◽  
M B Peterson ◽  
V V Ragavan ◽  
A G Ferguson ◽  
M Lesch

2019 ◽  
Author(s):  
Mariana López-Sámano ◽  
Luis Fernando Lozano-Aguirre Beltrán ◽  
Rosina Sánchez-Thomas ◽  
Araceli Dávalos ◽  
Tomás Villaseñor ◽  
...  

Abstractβ-alanine synthesis in bacteria occurs by the decarboxylation of L-aspartate as part of the pantothenate synthesis pathway. In the other two domains of life we find different pathways for β-alanine formation, such as sources from spermine in plants, uracil in yeast and by transamination reactions in insects and mammals. There are also promiscuous decarboxylases that can decarboxylate aspartate. Several bioinformatics studies about the conservation of pantothenate synthesis pathway performed on bacteria, archaea and eukaryotes, have shown a partial conservation of the pathway. As a part of our work, we performed an analysis of the prevalence of reported β-alanine synthesis pathways in 204 genomes of alpha-proteobacteria, with a focus on theRhizobialesorder. The aim of this work was to determine the enzyme or pathway used to synthetize β-alanine inRhizobium etliCFN42. Our bioinformatics analysis showed that this strain encodes the pyrimidine degradation pathway in its genome. We obtained a β-alanine synthase (amaB)mutant that was a β-alanine auxotroph. Complementation with the cloned gene restored the wild type phenotype. Biochemical analysis confirmed that the recombinant AmaB catalyzed the formation of β-alanine from 3-Ureidopropionic acidin vitro. Here we show a different way in bacteria to produce this essential metabolite.ImportanceSince the pioneer studies of Cronan (1980) on β-alanine synthesis inE. coli, it has been assumed that the decarboxilation of aspartate by the L-aspartate-α-decarboxylase it’s the main enzymatic reaction for β-alanine synthesis in bacteria. Forty years later, while we were studying the pantothenic acid synthesis in rhizobia, we demonstrate that a numerous and diverse group of bacteria classified as α-proteobacteria synthesize β-alaninede novousing β-alanine synthase, the last enzyme from the reductive pathway for uracil degradation.Additionally, there is a growing interest in β-amino acid due to its remarkable pharmaceuticals properties as hypoglycemic, antiketogenic and anti-fungal agents.


1984 ◽  
Vol 224 (3) ◽  
pp. 971-976 ◽  
Author(s):  
T N Palmer ◽  
M A Caldecourt ◽  
J P Warner ◽  
M C Sugden

3-Mercaptopicolinic acid (3-MPA) is reportedly a specific inhibitor of phosphoenolpyruvate (PEP) carboxykinase and has hitherto been used accordingly to elucidate the metabolic role of PEP carboxykinase in vitro and in vivo. We show that 3-MPA has multiple effects on intermediary metabolism in hemidiaphragms from 40 h-starved rats. It decreases the release of lactate + pyruvate and alanine in hemidiaphragms provided with no added substrate or with valine, leucine or isoleucine. Moreover, irrespective of the substrate provided (none, valine, leucine, isoleucine, glucose, acetate, oleate), 3-MPA decreases the [lactate]/[pyruvate] ratio. 3-MPA is without effect on 14CO2 production from [U-14C]valine, [1-14C]valine, [1-14C]leucine, [U-14C]isoleucine or [1-14C]oleate, but stimulates 14CO2 production from [U-14C]glucose and [1-14C]pyruvate and inhibits 14CO2 production from [1-14C]acetate. Glycolytic flux (measured as 3H2O formation from [5-3H]glucose) is stimulated by 3-MPA. It is concluded that 3-MPA has site(s) of actions other than PEP carboxykinase and that the putative role of PEP carboxykinase in alanine synthesis de novo in skeletal muscle from tricarboxylic acid-cycle intermediates and related amino acids requires reappraisal.


2005 ◽  
Vol 187 (15) ◽  
pp. 5493-5495 ◽  
Author(s):  
Shalini Kumar ◽  
Alexandre Bourdès ◽  
Philip Poole

ABSTRACT Deletion of both alanine dehydrogenase genes (aldA) in Mesorhizobium loti resulted in the loss of AldA enzyme activity from cultured bacteria and bacteroids but had no effect on the symbiotic performance of Lotus corniculatus plants. Thus, neither indeterminate pea nodules nor determinate L. corniculatus nodules export alanine as the sole nitrogen secretion product.


Sign in / Sign up

Export Citation Format

Share Document