partial conservation
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 11)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Vol 14 (3) ◽  
pp. 32-40
Author(s):  
Nívia C. V. Rocha ◽  
Aline M. M. De Lima ◽  
Marcos Adami

The Guamá River basin, in the northeastern state of Pará, eastern Amazon, Brazil, encompasses approximately 1,200,000 hectares. It presents great economic and social importance and is under significantly changes in land use and land cover. The objective of this work was to analyze and characterize the landscape structure of this basin through landscape ecology indexes (density, size, metric variability, shape, core area, proximity indexes, and patch area index). Land use and land cover maps were developed using images from the RapidEye system through supervised digital classification. The vegetation and landscape structure were quantified in patches, classes, and land cover. The forest patches were associated with partial conservation of some areas where production sectors had not yet directly affected, or those from natural regeneration of abandoned areas, mainly pastures. The class vegetated area was the second class most representative of the Guamá River basin covered about 37% considering the total area. The basin landscape presented more than 34,000 vegetated area patches It showing that this class are very fragmented by the presence of a large number of small patches, with this the basin landscape is compromised regarding its ecological integrity, since more than half of its forest patches are in edge environments. The indexes enabled a good joint analysis of the sub-basins of the Guamá River basin, resulting in a more detailed overview of the forest fragmentation process.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Josefina Hernández ◽  
Matías Gabrielli ◽  
Joaquín Costa ◽  
Antonio D. Uttaro

AbstractThe ciliate Tetrahymena thermophila can either synthesize tetrahymanol or when available, assimilate and modify sterols from its diet. This metabolic shift is mainly driven by transcriptional regulation of genes for tetrahymanol synthesis (TS) and sterol bioconversion (SB). The mechanistic details of sterol uptake, intracellular trafficking and the associated gene expression changes are unknown. By following cholesterol incorporation over time in a conditional phagocytosis-deficient mutant, we found that although phagocytosis is the main sterol intake route, a secondary endocytic pathway exists. Different expression patterns for TS and SB genes were associated with these entry mechanisms. Squalene synthase was down-regulated by a massive cholesterol intake only attainable by phagocytosis-proficient cells, whereas C22-sterol desaturase required ten times less cholesterol and was up-regulated in both wild-type and mutant cells. These patterns are suggestive of at least two different signaling pathways. Sterol trafficking beyond phagosomes and esterification was impaired by the NPC1 inhibitor U18666A. NPC1 is a protein that mediates cholesterol export from late endosomes/lysosomes in mammalian cells. U18666A also produced a delay in the transcriptional response to cholesterol, suggesting that the regulatory signals are triggered between lysosomes and the endoplasmic reticulum. These findings could hint at partial conservation of sterol homeostasis between eukaryote lineages.


2020 ◽  
Vol 21 (14) ◽  
pp. 5018 ◽  
Author(s):  
Nathanael Speeckaert ◽  
Nassirou Mahamadou Adamou ◽  
Hadjara Amadou Hassane ◽  
Fabien Baldacci-Cresp ◽  
Adeline Mol ◽  
...  

Monolignols are the building blocks for lignin polymerization in the apoplastic domain. Monolignol biosynthesis, transport, storage, glycosylation, and deglycosylation are the main biological processes partaking in their homeostasis. In Arabidopsis thaliana, members of the uridine diphosphate-dependent glucosyltransferases UGT72E and UGT72B subfamilies have been demonstrated to glycosylate monolignols. Here, the poplar UGT72 family, which is clustered into four groups, was characterized: Group 1 UGT72AZ1 and UGT72AZ2, homologs of Arabidopsis UGT72E1-3, as well as group 4 UGT72B37 and UGT72B39, homologs of Arabidopsis UGT72B1-3, glycosylate monolignols. In addition, promoter-GUS analyses indicated that poplar UGT72 members are expressed within vascular tissues. At the subcellular level, poplar UGT72s belonging to group 1 and group 4 were found to be associated with the nucleus and the endoplasmic reticulum. However, UGT72A2, belonging to group 2, was localized in bodies associated with chloroplasts, as well as possibly in chloroplasts. These results show a partial conservation of substrate recognition between Arabidopsis and poplar homologs, as well as divergent functions between different groups of the UGT72 family, for which the substrates remain unknown.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1436
Author(s):  
Qinwei Kim-Wee Zhuang ◽  
Jose Hector Galvez ◽  
Qian Xiao ◽  
Najla AlOgayil ◽  
Jeffrey Hyacinthe ◽  
...  

Sex biases in the genome-wide distribution of DNA methylation and gene expression levels are some of the manifestations of sexual dimorphism in mammals. To advance our understanding of the mechanisms that contribute to sex biases in DNA methylation and gene expression, we conducted whole genome bisulfite sequencing (WGBS) as well as RNA-seq on liver samples from mice with different combinations of sex phenotype and sex-chromosome complement. We compared groups of animals with different sex phenotypes, but the same genetic sexes, and vice versa, same sex phenotypes, but different sex-chromosome complements. We also compared sex-biased DNA methylation in mouse and human livers. Our data show that sex phenotype, X-chromosome dosage, and the presence of Y chromosome shape the differences in DNA methylation between males and females. We also demonstrate that sex bias in autosomal methylation is associated with sex bias in gene expression, whereas X-chromosome dosage-dependent methylation differences are not, as expected for a dosage-compensation mechanism. Furthermore, we find partial conservation between the repertoires of mouse and human genes that are associated with sex-biased methylation, an indication that gene function is likely to be an important factor in this phenomenon.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Andres Moreira-Soto ◽  
Francisco Arroyo-Murillo ◽  
Anna-Lena Sander ◽  
Andrea Rasche ◽  
Victor Corman ◽  
...  

Abstract The genealogy of the hepatitis C virus (HCV) and the genus Hepacivirus remains elusive despite numerous recently discovered animal hepaciviruses (HVs). Viruses from evolutionarily ancient mammals might elucidate the HV macro-evolutionary patterns. Here, we investigated sixty-seven two-toed and nine three-toed sloths from Costa Rica for HVs using molecular and serological tools. A novel sloth HV was detected by reverse transcription polymerase chain reaction (RT-PCR) in three-toed sloths (2/9, 22.2%; 95% confidence interval (CI), 5.3–55.7). Genomic characterization revealed typical HV features including overall polyprotein gene structure, a type 4 internal ribosomal entry site in the viral 5′-genome terminus, an A–U-rich region and X-tail structure in the viral 3′-genome terminus. Different from other animal HVs, HV seropositivity in two-toed sloths was low at 4.5 per cent (3/67; CI, 1.0–12.9), whereas the RT-PCR-positive three-toed sloths were seronegative. Limited cross-reactivity of the serological assay implied exposure of seropositive two-toed sloths to HVs of unknown origin and recent infections in RT-PCR-positive animals preceding seroconversion. Recent infections were consistent with only 9 nucleotide exchanges between the two sloth HVs, located predominantly within the E1/E2 encoding regions. Translated sequence distances of NS3 and NS5 proteins and host comparisons suggested that the sloth HV represents a novel HV species. Event- and sequence distance-based reconciliations of phylogenies of HVs and of their hosts revealed complex macro-evolutionary patterns, including both long-term evolutionary associations and host switches, most strikingly from rodents into sloths. Ancestral state reconstructions corroborated rodents as predominant sources of HV host switches during the genealogy of extant HVs. Sequence distance comparisons, partial conservation of critical amino acid residues associated with HV entry and selection pressure signatures of host genes encoding entry and antiviral protein orthologs were consistent with HV host switches between genetically divergent mammals, including the projected host switch from rodents into sloths. Structural comparison of HCV and sloth HV E2 proteins suggested conserved modes of hepaciviral entry. Our data corroborate complex macro-evolutionary patterns shaping the genus Hepacivirus, highlight that host switches are possible across highly diverse host taxa, and elucidate a prominent role of rodent hosts during the Hepacivirus genealogy.


2020 ◽  
Vol 35 (7) ◽  
pp. 1207-1215 ◽  
Author(s):  
Judith Everts‐Graber ◽  
Stephan Reichenbach ◽  
Hans Rudolf Ziswiler ◽  
Ueli Studer ◽  
Thomas Lehmann

2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Matthias Richard ◽  
Ana Victoria Gutiérrez ◽  
Laurent Kremer

ABSTRACT Macrolides are the cornerstone of Mycobacterium abscessus multidrug therapy, despite that most patients respond poorly to this class of antibiotics due to the inducible resistance phenotype that occurs during drug treatment. This mechanism is driven by the macrolide-inducible ribosomal methylase encoded by erm(41), whose expression is activated by the transcriptional regulator WhiB7. However, it has been debated whether clarithromycin and azithromycin differ in the extent to which they induce erm(41)-mediated macrolide resistance. Herein, we show that macrolide resistance is induced more rapidly in various M. abscessus isolates upon exposure to azithromycin than to clarithromycin, based on MIC determination. Macrolide-induced expression of erm(41) was assessed in vivo using a strain carrying tdTomato placed under the control of the erm(41) promoter. Visualization of fluorescent bacilli in infected zebrafish demonstrates that azithromycin and clarithromycin activate erm(41) expression in vivo. That azithromycin induces a more rapid expression of erm(41) was confirmed by measuring the β-galactosidase activity of a reporter strain in which lacZ was placed under the control of the erm(41) promoter. Shortening the promoter region in the lacZ reporter plasmid identified DNA elements involved in the regulation of erm(41) expression, particularly an AT-rich motif sharing partial conservation with the WhiB7-binding site. Mutation of this motif abrogated the macrolide-induced and WhiB7-dependent expression of erm(41). This study provides new mechanistic information on the adaptive response to macrolide treatment in M. abscessus.


2019 ◽  
Author(s):  
Lenka Cernikova ◽  
Carmen Faso ◽  
Adrian B. Hehl

AbstractPhosphorylated derivatives of phosphatidylinositol (PIPs), are key membrane lipid residues involved in clathrin-mediated endocytosis (CME). CME relies on PI(4,5)P2 to mark endocytic sites at the plasma membrane (PM) associated to clathrin-coated vesicle (CCV) formation. The highly diverged parasitic protist Giardia lamblia presents disordered and static clathrin assemblies at PM invaginations, contacting specialized endocytic organelles called peripheral vacuoles (PVs). The role for clathrin assemblies in fluid phase uptake and their link to internal membranes via PIP-binding adaptors is unknown.Here we provide evidence for a robust link between clathrin assemblies and fluid-phase uptake in G. lamblia mediated by proteins carrying predicted PX, FYVE and NECAP1 PIP-binding modules. We show that chemical and genetic perturbation of PIP-residue binding and turnover elicits novel uptake and organelle-morphology phenotypes. A combination of co-immunoprecipitation and in silico annotation techniques expands the initial PIP-binding network with addition of new members. Our data indicate that, despite the partial conservation of lipid markers and protein cohorts known to play important roles in dynamic endocytic events in well-characterized model systems, the Giardia lineage presents a strikingly divergent clathrin-centered network. This includes several PIP-binding modules, often associated to domains of currently unknown function that shape and modulate fluid-phase uptake at PVs.


2019 ◽  
Author(s):  
Mariana López-Sámano ◽  
Luis Fernando Lozano-Aguirre Beltrán ◽  
Rosina Sánchez-Thomas ◽  
Araceli Dávalos ◽  
Tomás Villaseñor ◽  
...  

Abstractβ-alanine synthesis in bacteria occurs by the decarboxylation of L-aspartate as part of the pantothenate synthesis pathway. In the other two domains of life we find different pathways for β-alanine formation, such as sources from spermine in plants, uracil in yeast and by transamination reactions in insects and mammals. There are also promiscuous decarboxylases that can decarboxylate aspartate. Several bioinformatics studies about the conservation of pantothenate synthesis pathway performed on bacteria, archaea and eukaryotes, have shown a partial conservation of the pathway. As a part of our work, we performed an analysis of the prevalence of reported β-alanine synthesis pathways in 204 genomes of alpha-proteobacteria, with a focus on theRhizobialesorder. The aim of this work was to determine the enzyme or pathway used to synthetize β-alanine inRhizobium etliCFN42. Our bioinformatics analysis showed that this strain encodes the pyrimidine degradation pathway in its genome. We obtained a β-alanine synthase (amaB)mutant that was a β-alanine auxotroph. Complementation with the cloned gene restored the wild type phenotype. Biochemical analysis confirmed that the recombinant AmaB catalyzed the formation of β-alanine from 3-Ureidopropionic acidin vitro. Here we show a different way in bacteria to produce this essential metabolite.ImportanceSince the pioneer studies of Cronan (1980) on β-alanine synthesis inE. coli, it has been assumed that the decarboxilation of aspartate by the L-aspartate-α-decarboxylase it’s the main enzymatic reaction for β-alanine synthesis in bacteria. Forty years later, while we were studying the pantothenic acid synthesis in rhizobia, we demonstrate that a numerous and diverse group of bacteria classified as α-proteobacteria synthesize β-alaninede novousing β-alanine synthase, the last enzyme from the reductive pathway for uracil degradation.Additionally, there is a growing interest in β-amino acid due to its remarkable pharmaceuticals properties as hypoglycemic, antiketogenic and anti-fungal agents.


2019 ◽  
Vol 20 (11) ◽  
pp. 2743 ◽  
Author(s):  
Zulfiqar Ali ◽  
Qasim Raza ◽  
Rana Muhammad Atif ◽  
Usman Aslam ◽  
Muhammad Ajmal ◽  
...  

Grasses represent a major family of monocots comprising mostly cereals. When compared to their eudicot counterparts, cereals show a remarkable morphological diversity. Understanding the molecular basis of floral organ identity and inflorescence development is crucial to gain insight into the grain development for yield improvement purposes in cereals, however, the exact genetic mechanism of floral organogenesis remains elusive due to their complex inflorescence architecture. Extensive molecular analyses of Arabidopsis and other plant genera and species have established the ABCDE floral organ identity model. According to this model, hierarchical combinatorial activities of A, B, C, D, and E classes of homeotic genes regulate the identity of different floral organs with partial conservation and partial diversification between eudicots and cereals. Here, we review the developmental role of A, B, C, D, and E gene classes and explore the recent advances in understanding the floral development and subsequent organ specification in major cereals with reference to model plants. Furthermore, we discuss the evolutionary relationships among known floral organ identity genes. This comparative overview of floral developmental genes and associated regulatory factors, within and between species, will provide a thorough understanding of underlying complex genetic and molecular control of flower development and floral organ identity, which can be helpful to devise innovative strategies for grain yield improvement in cereals.


Sign in / Sign up

Export Citation Format

Share Document