Monoclonal Antibodies to Lymphocyte Surface Molecules as Probes for Lymphocyte Functions

Author(s):  
M. A. Talle ◽  
G. Goldstein
1983 ◽  
Vol 157 (2) ◽  
pp. 705-719 ◽  
Author(s):  
S C Meuer ◽  
K A Fitzgerald ◽  
R E Hussey ◽  
J C Hodgdon ◽  
S F Schlossman ◽  
...  

Monoclonal antibodies were produced against a human cytotoxic T cell clone, CT8III (specificity: HLA-A3), with the view of defining clonally restricted (clonotypic) surface molecules involved in its antigen recognition function. Two individual antibodies, termed anti-Ti1A and anti-Ti1B, reacted exclusively with the CT8III clone when tested on a panel of 80 additional clones from the same donor, resting or activated T cells, B cells, macrophages, thymocytes, or other hematopoietic cells. More importantly, the two antibodies inhibited cell-mediated killing and antigen-specific proliferation of the CT8III clone but did not affect the functions of any other clone tested. This inhibition was not secondary to generalized abrogation of the CT8III clone's function, because interleukin 2 responsiveness was enhanced. To examine the relationship of the structures defined by anti-clonotypic antibodies with known T cell surface molecules, antibody-induced modulation studies and competitive binding assays were performed. The results indicated that the clonotypic structures were associated with, but distinct from, the 20,000-mol wt T3 molecule expressed on all mature T lymphocytes. Moreover, in contrast to anti-T3, anti-Ti1A and anti-Ti1B each immunoprecipitated two molecules of 49,000 and 43,000-mol wt from 131I-labeled CT8III cells under reducing conditions. The development of monoclonal antibodies to such polymorphic T cell surface structures should provide important probes to further define the surface receptor for antigen.


Blood ◽  
1989 ◽  
Vol 74 (5) ◽  
pp. 1836-1843 ◽  
Author(s):  
G Pasvol ◽  
JA Chasis ◽  
N Mohandas ◽  
DJ Anstee ◽  
MJ Tanner ◽  
...  

Abstract The effect of well-characterized monoclonal antibodies to red cell surface molecules on the invasion of human red cells by the malarial parasites Plasmodium falciparum and Plasmodium knowlesi was examined. Antibodies to glycophorin A (GP alpha) inhibit invasion for both parasite species, and this is highly correlated with the degree to which they decrease red cell membrane deformability as measured by ektacytometry. This effect on rigidity and invasion was also seen with monovalent Fab fragments. The closer the antibody binding site was to the membrane bilayer, the greater was its effect on inducing membrane rigidity and decreasing parasite invasion. Antibodies to the Wright determinant in particular were the most inhibitory. This differential effect of the various antibodies was not correlated with their binding affinities or the number of sites bound per cell. Antibodies to surface molecules other than GP alpha were without effect. A novel mechanism is described whereby monoclonal antibodies and their Fab fragments directed at determinants on the external surface of red cells might act to inhibit invasion by malarial parasites by altering membrane material properties.


1980 ◽  
Vol 17 (12) ◽  
pp. 1575-1583 ◽  
Author(s):  
Charles L. Sidman ◽  
Tuvia Bercovici ◽  
Carlos Gitler

1978 ◽  
Vol 79 (2) ◽  
pp. 419-426 ◽  
Author(s):  
J Braun ◽  
K Fujiwara ◽  
T D Pollard ◽  
E R Unanue

In the previous study, lymphocyte surface molecules were separated into two subsets depending on whether capping was associated was associated with redistribution of cytoplasmic myosin. In the present study, the effects of the local anesthetic chlorpromazine and of the Ca2+ ionophore A23187 were compared. Both drugs affected the surface redistribution of immunoglobulin (Ig), Fc receptors, and the TL antigen--molecules that appear to cap by association with microfilaments--but had no effect on the Thy.1 (theta) and H2 antigens--molecules that cap slowly, apparently unlinked to microfilament function. The capping of Ig, Fc receptor, and TL was inhibited while that of H2 and theta was not. Both drugs reversed the Ig Fc receptor, and TL caps but not the H2 and theta caps. In the former group, the reversal of caps was accompanied by a parallel reversal of the myosin segregated to the cap area. The appearance of myosin after drug treatment varied: chlorpromazine resulted in a diffuse pattern similar to that of normal lymphocytes, whereas A23187 produced an array of aggregates and coarse filaments. The results are compatible with the view that two mechanisms for capping exist in the lymphocyte. The Ca2+ ionophore may affect capping of microfilament-dependent caps by producing a systemic activation of contractile proteins while chlorpromazine may act by disrupting a Ca2+-dependent link between surface complexes and the contractile proteins.


Hybridoma ◽  
1983 ◽  
Vol 2 (3) ◽  
pp. 287-296 ◽  
Author(s):  
J. RICHARD PINK ◽  
ANNE-MARIE RIJNBEEK

Stem Cells ◽  
2009 ◽  
Vol 27 (9) ◽  
pp. 2103-2113 ◽  
Author(s):  
Paul Gadue ◽  
Valerie Gouon-Evans ◽  
Xin Cheng ◽  
Ewa Wandzioch ◽  
Kenneth S Zaret ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document