red cell membrane
Recently Published Documents


TOTAL DOCUMENTS

1001
(FIVE YEARS 36)

H-INDEX

75
(FIVE YEARS 3)

2022 ◽  
Author(s):  
LK Metthew Lam ◽  
Rebecca L. Clements ◽  
Kaitlyn A. Eckart ◽  
Ariel R. Weisman ◽  
Andy E. Vaughan ◽  
...  

Red blood cells (RBCs) express the nucleic acid-sensing toll-like receptor 9 (TLR9) and bind CpG-containing DNA. However, whether human RBCs express other nucleic acid-sensing TLRs and bind RNA is unknown. Here we show that human RBCs express the RNA sensor, TLR7. TLR7 is present on the red cell membrane and associates with the RBC membrane protein Band 3. RBCs bind synthetic single-stranded RNA and RNA from pathogenic single-stranded RNA viruses. RNA acquisition by RBCs is attenuated by recombinant TLR7 and inhibitory oligonucleotides. Thus, RBCs may represent a previously unrecognized reservoir for RNA, although how RNA-binding by RBCs modulates the immune response has yet to be elucidated. These findings add to the growing list of non-gas exchanging RBC immune functions.


Hematology ◽  
2021 ◽  
Vol 2021 (1) ◽  
pp. 331-340
Author(s):  
Theodosia A. Kalfa

Abstract Heterogeneous red blood cell (RBC) membrane disorders and hydration defects often present with the common clinical findings of hemolytic anemia, but they may require substantially different management, based on their pathophysiology. An accurate and timely diagnosis is essential to avoid inappropriate interventions and prevent complications. Advances in genetic testing availability within the last decade, combined with extensive foundational knowledge on RBC membrane structure and function, now facilitate the correct diagnosis in patients with a variety of hereditary hemolytic anemias (HHAs). Studies in patient cohorts with well-defined genetic diagnoses have revealed complications such as iron overload in hereditary xerocytosis, which is amenable to monitoring, prevention, and treatment, and demonstrated that splenectomy is not always an effective or safe treatment for any patient with HHA. However, a multitude of variants of unknown clinical significance have been discovered by genetic evaluation, requiring interpretation by thorough phenotypic assessment in clinical and/or research laboratories. Here we discuss genotype-phenotype correlations and corresponding clinical management in patients with RBC membranopathies and propose an algorithm for the laboratory workup of patients presenting with symptoms and signs of hemolytic anemia, with a clinical case that exemplifies such a workup.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kate Hsu ◽  
Yen-Yu Liu ◽  
Wei-Chin Tseng ◽  
Kuang-Tse Huang ◽  
Chia-Yuan Liu ◽  
...  

GP.Mur, a red blood cell (RBC) hybrid protein encoded by glycophorin B-A-B, increases expression of erythroid band 3 (Anion Exchanger-1, SLC4A1). GP.Mur is extremely rare but has a prevalence of 1–10% in regions of Southeast Asia. We unexpectedly found slightly higher blood pressure (BP) among healthy Taiwanese adults with GP.Mur. Since band 3 has been suggested to interact with hemoglobin (Hb) to modulate nitric oxide (NO)-dependent hypoxic vasodilation during the respiratory cycle, we hypothesized that GP.Mur red cells could exert differentiable effects on vascular tone. Here we recruited GP.Mur-positive and GP.Mur-negative elite male college athletes, as well as age-matched, GP.Mur-negative non-athletes, for NO-dependent flow-mediated dilation (FMD) and NO-independent dilation (NID). The subjects were also tested for plasma nitrite and nitrate before and after arterial occlusion in FMD. GP.Mur+ and non-GP.Mur athletes exhibited similar heart rates and blood pressure, but GP.Mur+ athletes showed significantly lower FMD (4.8 ± 2.4%) than non-GP.Mur athletes (6.5 ± 2.1%). NO-independent vasodilation was not affected by GP.Mur. As Hb controls intravascular NO bioavailability, we examined the effect of Hb on limiting FMD and found it to be significantly stronger in GP.Mur+ subjects. Biochemically, plasma nitrite levels were directly proportional to individual band 3 expression on the red cell membrane. The increase of plasma nitrite triggered by arterial occlusion also showed small dependency on band 3 levels in non-GP.Mur subjects. By the GP.Mur comparative study, we unveiled comodulation of NO-dependent vasodilation by band 3 and Hb, and verified the long-pending role of erythroid band 3 in this process.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jianmin Xiao ◽  
Miao Yan ◽  
Ke Zhou ◽  
Hui Chen ◽  
Zhaowei Xu ◽  
...  

Abstract The cell membrane is widely considered as a promising delivery nanocarrier due to its excellent properties. In this study, self-assembled Pseudomonas geniculate cell membranes were prepared with high yield as drug nanocarriers, and named BMMPs. BMMPs showed excellent biosafety, and could be more efficiently internalized by cancer cells than traditional red cell membrane nanocarriers, indicating that BMMPs could deliver more drug into cancer cells. Subsequently, the BMMPs were coated with nanoselenium (Se), and subsequently loaded with Mn2+ ions and doxorubicin (DOX) to fabricate a functional nanoplatform (BMMP-Mn2+/Se/DOX). Notably, in this nanoplatform, Se nanoparticles activated superoxide dismutase-1 (SOD-1) expression and subsequently up-regulated downstream H2O2 levels. Next, the released Mn2+ ions catalyzed H2O2 to highly toxic hydroxyl radicals (·OH), inducing mitochondrial damage. In addition, the BMMP-Mn2+/Se nanoplatform inhibited glutathione peroxidase 4 (GPX4) expression and further accelerated intracellular reactive oxygen species (ROS) generation. Notably, the BMMP-Mn2+/Se/DOX nanoplatform exhibited increased effectiveness in inducing cancer cell death through mitochondrial and nuclear targeting dual-mode therapeutic pathways and showed negligible toxicity to normal organs. Therefore, this nanoplatform may represent a promising drug delivery system for achieving a safe, effective, and accurate cancer therapeutic plan.


2021 ◽  
Author(s):  
Yuanqiang Wu ◽  
Shengchi Chen ◽  
Jisheng Li ◽  
Yue Pan ◽  
Chunhong Hu ◽  
...  

Abstract Immune checkpoint inhibitors (ICIs) have brought a revolution to the anti-cancer treatment, however, they also triger a unique spectrum of immune-related adverse events (irAEs). Among irAEs, haemopoietic AEs are rarely reported and mostly severe or even life-threatening, especially autoimmune haemolytic anemia (AIHA). AIHA is presumed to relate to the abnormal formation of circulating autoantibodies against red cell membrane antigens. It usually cannot be discovered timely because of atypical symptoms. It is diagnosed according to presence of hemolysis evidences such as decrease of haemoglobin, increase of indirect bilirubin and lactate dehydrogenase (LDH), urobilinogen, and positive direct antiglobulin test (DAT). Treatments of AIHA are according to clinical experience and consensus, which have not been verified by prospective trial. Here we investigate previous reported ICIs induced AIHA cases including thirty detailedly documented patients. On the other hand, we report three patients who developed AIHA after three different anti-PD-1 antibodies. Most of them were aged patients with melanoma or NSCLC, developed AIHA by anti-PD-1 antibodies and relived with glucocorticoid. 43.3% of previous cases and all of our observed cases had anemia before ICIs treatment, which reminds us of anemia as a risk factor for ICIs induced AIHA. By screening parameters like complete blood examination, reticulocyte, liver function test or DAT test prior to immunotherapy, doctors could exclude pretreatment haemolytic anemia or be aware of post ICIs AIHA. Thus, it is possible to avoid the potentially life-threatening AIHA, or improve the level of pre-alarm and treatment ability of AIHA.


Author(s):  
Margaux Chauvet ◽  
Cerina Chhuon ◽  
Joanna Lipecka ◽  
Sébastien Dechavanne ◽  
Célia Dechavanne ◽  
...  

The high prevalence of sickle cell disease in some human populations likely results from the protection afforded against severe Plasmodium falciparum malaria and death by heterozygous carriage of HbS. P. falciparum remodels the erythrocyte membrane and skeleton, displaying parasite proteins at the erythrocyte surface that interact with key human proteins in the Ankyrin R and 4.1R complexes. Oxidative stress generated by HbS, as well as by parasite invasion, disrupts the kinase/phosphatase balance, potentially interfering with the molecular interactions between human and parasite proteins. HbS is known to be associated with abnormal membrane display of parasite antigens. Studying the proteome and the phosphoproteome of red cell membrane extracts from P. falciparum infected and non-infected erythrocytes, we show here that HbS heterozygous carriage, combined with infection, modulates the phosphorylation of erythrocyte membrane transporters and skeletal proteins as well as of parasite proteins. Our results highlight modifications of Ser-/Thr- and/or Tyr- phosphorylation in key human proteins, such as ankyrin, β-adducin, β-spectrin and Band 3, and key parasite proteins, such as RESA or MESA. Altered phosphorylation patterns could disturb the interactions within membrane protein complexes, affect nutrient uptake and the infected erythrocyte cytoadherence phenomenon, thus lessening the severity of malaria symptoms.


2020 ◽  
Vol 12 (04) ◽  
pp. 244-249
Author(s):  
Ibrahim Mustafa ◽  
Tameem Ali Qaid Hadwan

Abstract Introduction Maintaining blood supply is a challenge in blood banks. Red blood cells (RBCs) stored at 4°C experience issues of biochemical changes due to metabolism of cells, leading to changes collectively referred to as “storage lesions.” Oxidation of the red cell membrane, leading to lysis, contributes to these storage lesions. Methods Blood bags with CPD-SAGM stored at 4°C for 28 days were withdrawn aseptically on days 1, 14, and 28. Hematology analyzer was used to investigate RBC indices. Hemoglobin oxidation was studied through spectrophotometric scan of spectral change. RBC lysis was studied with the help of Drabkin's assay, and morphological changes were observed by light and scan electron microscopy. Results RBCs show progressive changes in morphology echinocytes and spherocytes on day 28. There was 0.85% RBC lysis, an approximately 20% decrease in percentage oxyhemoglobin, and a 14% increase in methemoglobin formation, which shows hemoglobin oxidation on day 28. Conclusions Oxidative damage to RBC, with an increase in storage time was observed in the present study. The observed morphological changes to RBC during the course of increased time shows that there is progressive damage to RBC membrane and a decrease in hemoglobin concentration; percentage RBC lysis is probably due to free hemoglobin and iron.


2020 ◽  
Author(s):  
Edith Christiane Bougouma ◽  
Sodiomon Bienvenu Sirima

An estimated 300,000 babies are born each year with severe Inherited Disorders of Hemoglobin (IDH). Despite major advances in the understanding of the molecular pathology, control, and management of the IDH thousands of infants and children with these diseases are dying due to the accessibility to appropriate medical care. In addition, as malaria has been the principal cause of early mortality in several parts of the world for much of the last 5000 years, as a result, it is the strongest force for selective pressure on the human genome. That is why, in the world, there is an overlap of malaria endemicity and IDH. Over the past twenty years several studies have shown that IDH such us hemoglobin and/or red cell membrane abnormalities confer resistance to malaria reducing hence the mortality during the first years of life. This has led to the selection of populations with IDH in malaria-endemic areas. This may explain the overlap between these two pathologies. This chapter aims to present the relationship between IDH and malaria susceptibility, make an overview of the current state of knowledge and the burden of IDH, and highlight steps that require to be taken urgently to improve the situation.


Sign in / Sign up

Export Citation Format

Share Document