surface complexes
Recently Published Documents


TOTAL DOCUMENTS

352
(FIVE YEARS 47)

H-INDEX

45
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Gaosheng Zhang ◽  
Jinglin Luo ◽  
Hanlin Cao ◽  
Shengping Hu ◽  
Huosheng Li ◽  
...  

AbstractIn this study, amorphous hydrous titanium dioxide was synthesized by a facile precipitation method at room temperature, aiming to effectively remove thallium(I) from water. The titanium dioxide prepared using ammonia as precipitant (TiO2I) is more effective for thallium(I) uptake than the one synthesized with sodium hydroxide (TiO2II). The TiO2 obtained particles are amorphous, aggregates of many nanoparticles and irregular in shape. The thallium(I) uptake increases with the rise of solution pH value. Under neutral pH conditions, the maximal thallium(I) adsorption capacities of TiO2I and TiO2II are 302.6 and 230.3 mg/g, respectively, outperforming most of the reported adsorbents. The amorphous TiO2 has high selectivity towards thallium(I) in the presence of multiple cations such as K+, Ca2+, Mg2+, Zn2+ and Ni2+. Moreover, the TiO2I is efficient in removing thallium(I) from real river water and mining wastewater. Additionally, the spent TiO2I can be regenerated using hydrochloric acid solution and reused. The Tl(I) adsorption is achieved via replacing the H+ in hydroxyl group on the surface of TiO2 and forming inner-sphere surface complexes. Owing to its high efficiency, facile synthesis and environmental friendliness, the TiO2I has the potential to be used as an alternative adsorbent to remove Tl(I) from water.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1508
Author(s):  
Tetiana Kulik ◽  
Nataliia Nastasiienko ◽  
Borys Palianytsia ◽  
Mykola Ilchenko ◽  
Mats Larsson

Studies of the thermochemical properties of the important model compound of lignin-ferulic acid (FA) and its surface complexes are substantial for developing technologies for catalytic pyrolysis of renewable biomass into biofuels and lignin-derived chemicals as well as for bio-oil upgrading. In this work, the catalytic pyrolysis of ferulic acid over alumina was studied by temperature-programmed desorption mass spectrometry (TPD MS), in situ FT-IR spectroscopy, thermogravimetric analysis, and DFT calculations. We established that both the carboxyl group and the active groups (HO and CH3O) of the aromatic ring interact with the alumina surface. We calculated the kinetic parameters of formation of the main products of catalytic pyrolysis: 4-vinylguaiacol, guaiacol, hydroxybenzene, benzene, toluene, cresol, naphthalene, and PACs. Possible methods of their forming from the related surface complexes of FA are suggested.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1093
Author(s):  
David García ◽  
Johannes Lützenkirchen ◽  
Maximilien Huguenel ◽  
Léa Calmels ◽  
Vladimir Petrov ◽  
...  

In this work, the adsorption behavior of Sr onto a synthetic iron(III) oxide (hematite with traces of goethite) has been studied. This solid, which might be considered a representative of Fe3+ solid phases (iron corrosion products), was characterized by X-Ray Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS), and its specific surface area was determined. Both XRD and XPS data are consistent with a mixed solid containing more than 90% hematite and 10% goethite. The solid was further characterized by fast acid-base titrations at different NaCl concentrations (from 0.1 to 5 M). Subsequently, for each background NaCl concentration used for the acid-base titrations, Sr-uptake experiments were carried out involving two different levels of Sr concentration (1·10−5 and 5·10−5 M, respectively) at constant solid concentration (7.3 g/L) as a function of −log([H+]/M). A Surface Complexation Model (SCM) was fitted to the experimental data, following a coupled Pitzer/surface complexation approach. The Pitzer model was applied to aqueous species. A Basic Stern Model was used for interfacial electrostatics of the system, which includes ion-specific effects via ion-specific pair-formation constants, whereas the Pitzer-approach involves ion-interaction parameters that enter the model through activity coefficients for aqueous species. A simple 1-pK model was applied (generic surface species, denoted as >XOH−1/2). Parameter fitting was carried out using the general parameter estimation software UCODE, coupled to a modified version of FITEQL2. The combined approach describes the full set of data reasonably well and involves two Sr-surface complexes, one of them including chloride. Monodentate and bidentate models were tested and were found to perform equally well. The SCM is particularly able to account for the incomplete uptake of Sr at higher salt levels, supporting the idea that adsorption models conventionally used in salt concentrations below 1 M are applicable to high salt concentrations if the correct activity corrections for the aqueous species are applied. This generates a self-consistent model framework involving a practical approach for semi-mechanistic SCMs. The model framework of coupling conventional electrostatic double layer models for the surface with a Pitzer approach for the bulk solution earlier tested with strongly adsorbing solutes is here shown to be successful for more weakly adsorbing solutes.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Huemantzin B. Ortiz-Oliveros ◽  
Rosa Ma. Flores Espinosa ◽  
Pedro Ávila-Pérez ◽  
Daniel Cruz-Gonzalez ◽  
Noureddine Ouerfelli

Perovskites, such as tausonite, are crystalline metal oxides with excellent optical and photocatalytic properties and have also been used successfully in the retention of metals, simulating the isotopes of uranium and plutonium. In this work, different pseudo-order and thermodynamic models were studied to achieve the prediction of the sorption of Eu3+ (chemical analogous for actinides) in tausonite. The effects of gamma irradiation and temperature on the structural characteristics of the material were determined, as an additional step in the evaluation of material as an engineering barrier in the disposal of radioactive waste. The results obtained show that the tausonite is resistant to the gamma irradiation and thermal energy. Likewise, it was possible to determine that europium sorption occurs through an exothermic and spontaneous reaction, as well as through the formation of surface complexes, where Eu3+ ions bind to sites on the tausonite by dipole-dipole interaction. Furthermore, it was shown that the sorption mechanism is influenced by diffusive phenomena, which participate in the formation of surface complexes. Additionally, a new sorption model with respect to pH was proposed, which allowed determining the physical parameter π. The evidence obtained suggests that π is a physical parameter that relates pH to an optimal value and could explain the equilibrium between the surface complexes that tausonite forms with europium. Likewise, the evidence suggests that 50 kg of tausonite would have the capacity to retain at least 26.59 g of alpha-emitting radionuclides, equivalent to a waste package (900 kg) with a maximum activity of 4000 Bq/g.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2305
Author(s):  
Ventura Castillo Ramos ◽  
José Rivera Utrilla ◽  
Antonio Ruiz Sánchez ◽  
María Victoria López Ramón ◽  
Manuel Sánchez Polo

This study evaluated the waste generated by a Spanish marble-producing company as adsorbent for the removal of copper (Cu [II]) from aqueous media. Six marble waste sludge samples were studied, and the following operational parameters were analyzed in discontinuous regime, including pollutant concentration, pH, temperature, nature of aqueous medium, and ionic strength. The applicability of the adsorbent material was assessed with experiments in both continuous and discontinuous regimes under close-to-real-life conditions. A pseudo-second order model yielded a better fit to the kinetic data. Application of the intraparticle diffusion model revealed two well-differentiated adsorption stages, in which the external material transfer is negligible and intraparticle diffusion is the controlling stage. The equilibrium study was better fitted to a Freundlich-type isotherm, predicting elevated maximum adsorption values (22.7 mg g−1) at a relatively low initial Cu (II) concentration (25 ppm), yielding a highly favorable chemisorption process (n >> 1). X-ray fluorescence study identified calcite (CaCO3) as the main component of marble waste sludges. According to X-ray diffraction analysis, Cu (II) ion adsorption occurred by intercalation of the metallic cation between CaCO3 layers and by the formation of surface complexes such as CaCO3 and Cu2(CO3)(OH)2. Cu (II) was more effectively removed at medium pH, lower temperature, and lower ionic strength of the aqueous medium. The salinity and dissolved organic matter in surface, ground-, and waste-waters negatively affected the Cu (II) removal process in both continuous and discontinuous regimes by competing for active adsorption sites. These findings demonstrate the applicability and effectiveness of marble-derived waste sludges as low-cost and readily available adsorbents for the treatment of waters polluted by Cu (II) under close-to-real-life conditions.


2021 ◽  
Vol 11 (16) ◽  
pp. 7205
Author(s):  
Nataliia Nastasiienko ◽  
Tetiana Kulik ◽  
Borys Palianytsia ◽  
Julia Laskin ◽  
Tetiana Cherniavska ◽  
...  

Understanding the mechanisms of thermal transformations of model lignin compounds (MLC) over nanoscale catalysts is important for improving the technologic processes occurring in the pyrolytic conversion of lignocellulose biomass into biofuels and value-added chemicals. Herein, we investigate catalytic pyrolysis of MLC (pyrocatechol (P), guaiacol (G), ferulic (FA), and vanillic acids (VA)) over nanoceria using FT-IR spectroscopy, temperature-programmed desorption mass spectrometry (TPD MS), and thermogravimetric analysis (DTG/DTA/TG). FT-IR spectroscopic studies indicate that the active groups of aromatic rings of P, G, VA, and FA as well as carboxylate groups of VA and FA are involved in the interaction with nanoceria surface. We explore the general transformation mechanisms of different surface complexes and identify their decomposition products. We demonstrate that decomposition of carboxylate acid complexes occurs by decarboxylation. When FA is used as a precursor, this reaction generates 4-vinylguaiacol. Complexes of VA and FA formed through both active groups of the aromatic ring and decompose on the CeO2 surface to generate hydroxybenzene. The formation of alkylated products accompanies catalytic pyrolysis of acids due to processes of transalkylation on the surface.


2021 ◽  
Vol 2021 (8) ◽  
pp. 924-929
Author(s):  
I. A. Babina ◽  
B. S. Vorontsov ◽  
V. V. Moskvin ◽  
I. N. Grekhov ◽  
A. O. Babin
Keyword(s):  

Chemosphere ◽  
2021 ◽  
pp. 131641
Author(s):  
Mengjie Wang ◽  
Huanhuan Shi ◽  
Shuai Shao ◽  
Kun Lu ◽  
Hanyu Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document