A Survey of Forest Soil Properties Related to Soil Acidification in Southern Finland

1990 ◽  
pp. 235-251 ◽  
Author(s):  
Pekka Tamminen ◽  
Michael R. Starr
2021 ◽  
Vol 106 ◽  
pp. 103346
Author(s):  
Ladislav Holik ◽  
Valerie Vranova ◽  
Lenka Foltynova ◽  
Manuel Acosta

2009 ◽  
pp. 95-110 ◽  
Author(s):  
Ratko Kadovic ◽  
Snezana Belanovic ◽  
Milan Knezevic ◽  
Jelena Belojica ◽  
Jasmina Knezevic

In the last two decades, S and N critical loads have been used as indicators of ecosystem sustainability to soil acidification. The effect of acidification on the soil in forest ecosystems and their further development was the subject of numerous studies, based on which several mathematical models were developed. This paper presents the results of the analysis of acidification processes in brown podzolic soil on granodiorites in the stands of spruce and spruce and fir in the area of NP 'Kopaonik'. Critical loads of sulphur and nitrogen in these soils are presented using VSD model.


2008 ◽  
Vol 129 (1) ◽  
pp. 15-24 ◽  
Author(s):  
A. Pérez-Bejarano ◽  
J. Mataix-Solera ◽  
R. Zornoza ◽  
C. Guerrero ◽  
V. Arcenegui ◽  
...  

2018 ◽  
Author(s):  
Jörg Niederberger ◽  
Martin Kohler ◽  
Jürgen Bauhus

Abstract. Repeated, grid-based forest soil inventories such as the nationwide German forest soil survey (GFSI) aim, among other things, at detecting changes in soil properties and plant nutrition. In these types of inventories, the only information on soil phosphorus (P) is commonly the total P content. However, total P content in mineral soils of forests is usually not a meaningful variable to predict the availability of P to trees. Here we tested a modified sequential P extraction ac-cording to Hedley to determine the distribution of different plant available P fractions in soil samples (0–5 and 10–30 cm depth) from 146 GFSI sites, capturing a wide variety of soil conditions. In addition, we analyzed relationships between these P fractions and common soil proper-ties such as pH, texture, and organic Carbon content (SOC). Total P content among our samples ranged from approximately 60 up to 2800 mg kg−1. The labile, moderately labile, and stable P fractions contributed to 27 %, 51 % and 22 % of total P content, respectively, at 0–5 cm depth. At 10–30 cm depth, the labile P fractions decreased to 15 %, whereas the stable P fractions in-creased to 30 %. These changes with depth were accompanied by a decrease in the organic P fractions. High P contents were related with high pH-values. Whereas the labile P pool increased with decreasing pH in absolute and relative terms, the stable P pool decreased in absolute and relative terms. Increasing SOC in soils led to significant increases in all P pools and in total P. In sandy soils, the P content across all fractions was lower than in other soil texture types. Multiple linear regressions indicated that P pools and P fractions were moderately well related to soil properties (r2 mostly above 0.5), and sand content of soils had the strongest influence. Foliage P concentrations in Pinus sylvestris were reasonably well explained by the labile and moderately labile P pool (r


SOIL ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 189-204 ◽  
Author(s):  
Jörg Niederberger ◽  
Martin Kohler ◽  
Jürgen Bauhus

Abstract. Repeated, grid-based forest soil inventories such as the National Forest Soil Inventory of Germany (NFSI) aim, among other things, at detecting changes in soil properties and plant nutrition. In these types of inventories, the only information on soil phosphorus (P) is commonly the total P content. However, total P content in mineral soils of forests is usually not a meaningful variable with respect to predicting the availability of P to trees. Here we tested a modified sequential P extraction according to Hedley (1982) to determine the distribution of different plant-available P fractions in soil samples (at depths of 0–5 and 10–30 cm) from 146 NFSI sites, encompassing a wide variety of soil conditions. In addition, we analyzed relationships between these P fractions and common soil properties such as pH, texture, and soil organic carbon content (SOC). The total P content among our samples ranged from approximately 60 to 2800 mg kg−1. The labile, moderately labile, and stable P fractions contributed to 27 %, 51 %, and 22 % of the total P content, respectively, at a depth of 0–5 cm. At a depth of 10–30 cm, the labile P fractions decreased to 15 %, whereas the stable P fractions increased to 30 %. These changes with depth were accompanied by a decrease in the organic P fractions. High P contents were related to high pH values. While the labile Hedley P pool increased with decreasing pH in absolute and relative terms, the stable Hedley P pool decreased in absolute and relative terms. Increasing SOC in soils led to significant increases in all Hedley P pools and in total P. In sandy soils, the P content across all fractions was lower than in other soil texture types. Multiple linear regression models indicated that Hedley P pools and P fractions were moderately well related to soil properties (with r2 values that were mostly above 0.5), and that the sand content of soils had the strongest influence. Foliar P contents in Pinus sylvestris were reasonably well explained by the labile and moderately labile P pool (r2 = 0.67) but not so for Picea abies and Fagus sylvatica. Foliar P contents in all three species could not be related to specific Hedley P pools. Our study indicates that soil properties such as pH, SOC content, and soil texture may be used to predict certain soil Hedley P pools with different plant availability on the basis of large soil inventories. However, the foliar P contents of tree species cannot be sufficiently well predicted by the soil variables considered here.


2012 ◽  
Vol 56 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Philipp Herbst ◽  
Jens Gross ◽  
Uwe Meer ◽  
Thomas Mosimann

2016 ◽  
Vol 370 ◽  
pp. 83-92 ◽  
Author(s):  
I. Yesilonis ◽  
K. Szlavecz ◽  
R. Pouyat ◽  
D. Whigham ◽  
L. Xia

Author(s):  
Isabel M. González ◽  
Juan F. Gallardo ◽  
José A. Egido ◽  
José J. Obrador

Sign in / Sign up

Export Citation Format

Share Document