European Journal of Forest Research
Latest Publications


TOTAL DOCUMENTS

3285
(FIVE YEARS 271)

H-INDEX

57
(FIVE YEARS 6)

Published By Springer-Verlag

1612-4677, 1612-4669

Author(s):  
V. L. Shannon ◽  
E. I. Vanguelova ◽  
J. I. L. Morison ◽  
L. J. Shaw ◽  
J. M. Clark

AbstractDeadwood forms a significant carbon pool in forest systems and is a potential source of dissolved organic carbon (DOC) input to soil, yet little is known about how deadwood effects forest soil carbon cycling. Deadwood DOC inputs to soil may be retained through sorption or may prime microbial decomposition of existing organic matter to produce additional DOC. To determine impacts of deadwood on soil C cycling, we analysed surface soil from beneath deadwood or leaf litter only, along chronosequences of stands of lowland oak and upland Sitka spruce. The concentration and quality (by optical indices) of water-extracted soil DOC (water-extractable organic carbon; WEOC), in situ decomposition ‘tea bag index’ (TBI) parameters and enzymatic potential assays (β-D-cellubiosidase, β-glucosidase, β-xylosidase, leucine aminopeptidase, phosphatase, phenol oxidase) were determined. Presence of deadwood significantly (p < 0.05) increased WEOC concentration (~ 1.5 to ~ 1.75 times) in the mineral oak soil but had no effect on WEOC in spruce soils, potentially because spruce deadwood DOC inputs were masked by a high background of WEOC (1168 mg kg−1 soil) and/or were not retained through mineral sorption in the highly organic (~ 90% SOM) soil. TBI and enzyme evidence suggested that deadwood-derived DOC did not impact existing forest carbon pools via microbial priming, possibly due to the more humified/aromatic quality of DOC produced (humification index of 0.75 and 0.65 for deadwood and leaf litter WEOC, respectively). Forest carbon budgets, particularly those for mineral soils, may underestimate the quantity of DOC if derived from soil monitoring that does not include a deadwood component.


Author(s):  
Maude Toïgo ◽  
Bastien Castagneyrol ◽  
Hervé Jactel ◽  
Xavier Morin ◽  
Celine Meredieu

Author(s):  
Ricardo Rodrigues de Oliveira Neto ◽  
Helio Garcia Leite ◽  
José Marinaldo Gleriani ◽  
Bogdan M. Strimbu

Author(s):  
Hans Pretzsch

AbstractForest tree growth is primarily explained, modelled, and predicted depending on current age or size, environmental conditions, and competitive status in the stand. The accumulated size is commonly used as a proxy for a tree's past development. However, recent studies suggest that antecedent conditions may impact present growth by epigenetic, transcriptional, proteomic, or metabolic changes alongside physiological and structural properties. Here, I analysed the ecological memory effect embedded in the xylem as a tree-ring structure. I used 35 mature Norway spruces (Picea abies (L.) H. Karst.) and 36 European beeches (Fagus sylvatica L.) of the Kranzberg Forest water retention experiment KROOF in South Germany to scrutinise how their past development determines the growth of control plots and plots with 5-year water retention. I hypothesised that the current size and growing conditions determine tree growth and drought stress resistance. Metrics quantifying the trees’ recent and past growth, and correlation and linear mixed models with random effects revealed the following ecological memory effects. (1) For both species, the progressive growth course, low inter-annual growth variation in the long term, and low growth deflections in the recent past increased the growth resistance to drought. (2) The correlation between the past growth metrics and current stress reactions revealed that legacy effects could reach back 5–30 years; I found short- and long-term ecological memory. (3) Parameters of model prediction of the basic model with only size as a predictor of tree growth could be improved. The results suggest differences in the internal stem structure and ring pattern cause-specific differences in the trees' functioning and growth. I conclude that a long-term progressive increase and low variation in ring width may improve water conduction and reduce embolism in both species. Annual growth variation and low growth events in the recent past may have primed the morphology and allocation of the Norway spruce to better resist drought. The strong reduction in current growth, drought resistance by irregular growth, and past growth disturbances reveal a memory effect embedded in the tree ring pattern, suggesting further exploration and consideration in tree monitoring, growth modelling, and silvicultural prescriptions.


Author(s):  
Elena Marra ◽  
Andrea Laschi ◽  
Fabio Fabiano ◽  
Cristiano Foderi ◽  
Francesco Neri ◽  
...  

AbstractIntensive forestry operations may cause soil compaction, plastic soil disturbances and rutting, which are responsible for undesirable effects on soils, vegetation and water bodies. Despite the numerous studies aimed to identify the main factors affecting soil damages, it still remains unclear whether wood extraction methods and driving direction (uphill or downhill) may affect the impacts of forest machines. This research analyses soil compaction and soil penetration resistance as well as rutting from forwarding and skidding using the same farm tractor in up- and downhill wood extraction. Rutting was estimated by 3D soil reconstruction derived by portable laser scanning (PLS) and close-range photogrammetry using structure for motion (SfM). Our findings showed that the direction of extraction did not affect soil damage severity during forwarding on a 25% slope. On the contrary, in order to reduce soil compaction, downhill skidding is preferable to uphill skidding. The results showed that the pressure on the ground caused by vehicles can be distributed horizontally, thus affecting also the soil between the wheel tracks. The soil bulk density inside the tracks after 10 forwarding passes increased by 40% and with 23% between the wheel tracks. The soil displacement in skidding trails (7.36 m3 per 100 m of trail) was significantly higher than in forwarding (1.68 m3 per 100 m of trail). The rutting estimation showed no significant difference between the PLS and SfM methods, even comparing the two digital surface models (DSMs) obtained, even if photogrammetry was preferred for technical and practical reasons.


Sign in / Sign up

Export Citation Format

Share Document