A Survey of the Transition Prediction Methods: from Analytical Criteria to PSE and DNS

1995 ◽  
pp. 3-14 ◽  
Author(s):  
D. Arnal ◽  
G. Casalis ◽  
J. C. Juillen
Author(s):  
G. Leoutsakos ◽  
K. D. Papailiou

Calculation of the aerodynamic parameters of axial turbomachinery blades, and an accurate assessment of the flow over the blade surfaces under today’s increasingly demanding requirements for higher efficiencies and optimized blade shapes, at both design and off-design conditions, impose a need for accurate prediction methods able to compute through two sensitive but highly critical phenomena: separation and transition. The present study describes work done on the modelling and prediction of transitional regions, such as those appearing on turbomachinery blading, covering both attached and separated flows. The concept of an engineering method, cheap to run and avoiding complex CFD and turbulence model formulations was always kept in mind. Results include comparisons of integral quantities and velocity profiles in zero, favourable or adverse pressure gradient attached flows, and velocity distributions including points of separation, transition and reattachment in separated airfoil flows, obtained either from a straightforward shear layer calculation or from a viscous-inviscid interaction procedure.


Author(s):  
Zihui Hao ◽  
Chao Yan ◽  
Ling Zhou ◽  
Yupei Qin

Predicting boundary layer transition accurately is important to thermal protection and drag reduction of flight vehicles. Up to now, there has been many transition prediction methods. However, most of those methods need boundary layer parameters, which are difficult to obtain in massively parallel execution since some parameters are nonlocal variables, thus greatly limiting the application of those methods. A grid-reorder method is developed to obtain the boundary layer parameters, which is suitable for parallel computing in this paper. With the grid-reorder method the wall normal grid cells can be easily found, and two criteria are used to determine the boundary layer edge in the wall normal direction, then the boundary layer parameters such as boundary layer thickness, boundary layer momentum thickness, boundary layer edge velocity, cross-flow velocity, and so on, can be obtained accurately and efficiently. The method has been coupled to three transition prediction methods, the γ-Reθ model, the k-ω-γ model, and the transition correlations, to validate its effectiveness. For the γ-Reθ model, the cross-flow velocity is obtained with the grid-reorder method, then a cross-flow intermittency factor is developed and introduced into the model, and the inclined prolate spheroid case is used to test the performance of the model. For the k-ω-γ model, the grid-reorder method is applied to obtain the boundary layer edge velocity and the inflection point velocity which are of vital importance to form the second-mode timescale for hypersonic transition prediction. For the transition correlations, Reθ/ Me is obtained effectively with the grid-reorder method. The X-51 forebody is selected to test the effectiveness of Reθ/Me for complex geometries and the results show a good correspondence with the experiment results. The successful application in three transition prediction methods demonstrates that the grid-reorder method has an excellent performance in obtaining the boundary layer parameters and can broaden the application of the existing transition prediction method in engineering.


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Jiyuan Tan ◽  
Qianqian Qiu ◽  
Shuofeng Wang ◽  
Na Xie ◽  
Yuelong Su ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document