In vitro Rearrangement and Deletion of Plasmid DNA Sequences: The Isolation and Partial Characterization of a Novel F-Controlled Plasmid Cloning Vehicle

Plasmids ◽  
1977 ◽  
pp. 407-415
Author(s):  
J. J. Manis ◽  
B. C. Kline
1983 ◽  
Vol 258 (19) ◽  
pp. 11430-11433 ◽  
Author(s):  
C Edelstein ◽  
J I Gordon ◽  
K Toscas ◽  
H F Sims ◽  
A W Strauss ◽  
...  

2003 ◽  
Vol 93 (5) ◽  
pp. 596-603 ◽  
Author(s):  
Jeri D. Barak ◽  
Robert L. Gilbertson

Bacterial leafspot of lettuce (BLS), caused by Xanthomonas campes-tris pv. vitians, has become more prevalent in many lettuce-growing areas of the world over the past decade. To gain insight into the nature of these outbreaks, the genetic variation in X. campestris pv. vitians strains from different geographical locations was examined. All strains were first tested for pathogenicity on lettuce plants, and then genetic diversity was assessed using (i) gas-chromatographic analysis of bacterial fatty acids, (ii) polymerase chain reaction analysis of repetitive DNA sequences (rep-PCR), (iii) DNA sequence analysis of the internal transcribed spacer region 1 (ITS1) of the ribosomal RNA, (iv) restriction fragment length polymorphism (RFLP) analysis of total genomic DNA with a repetitive DNA probe, and (v) detection and partial characterization of plasmid DNA. Fatty acid analysis identified all pathogenic strains as X. campestris, but did not consistently identify all the strains as X. campestris pv. vitians. The rep-PCR fingerprints and ITS1 sequences of all pathogenic X. campestris pv. vitians strains examined were identical, and distinct from those of the other X. campestris pathovars. Thus, these characteristics did not reveal genetic diversity among X. campestris pv. vitians strains, but did allow for differentiation of X. campestris pathovars. Genetic diversity among X. campestris pv. vitians strains was revealed by RFLP analysis with a repetitive DNA probe and by characterization of plasmid DNA. This diversity was greatest among strains from different geographical regions, although diversity among strains from the same location also was detected. The results of this study suggest that these X. campestris pv. vitians strains are not clonal, but comprise a relatively homogeneous group.


1987 ◽  
Vol 7 (9) ◽  
pp. 3124-3130 ◽  
Author(s):  
D Ganea ◽  
P Moore ◽  
L Chekuri ◽  
R Kucherlapati

We have characterized an enzymatic activity from human cell nuclei which is capable of catalyzing strand exchange between homologous DNA sequences. The strand exchange activity was Mg2+ dependent and required ATP hydrolysis. In addition, it was capable of promoting reannealing of homologous DNA sequences and could form nucleoprotein networks in a fashion reminiscent of purified bacterial RecA protein. Using an in vitro recombination assay, we also showed that the strand exchange activity was biologically important. The factor(s) responsible for the activity has been partially purified.


1985 ◽  
Vol 82 (22) ◽  
pp. 7490-7494 ◽  
Author(s):  
J. L. Specker ◽  
D. S. King ◽  
R. S. Nishioka ◽  
K. Shirahata ◽  
K. Yamaguchi ◽  
...  

2000 ◽  
Vol 32 (5) ◽  
pp. 417-424 ◽  
Author(s):  
N.A. Odintsova ◽  
S.V. Plotnikov ◽  
A.A. Karpenko

Sign in / Sign up

Export Citation Format

Share Document