Viscosity Dependence of Iodine Recombination

Author(s):  
C. A. Langhoff ◽  
B. Moore ◽  
W. Nugent
Keyword(s):  
2016 ◽  
Vol 11 (2) ◽  
pp. 218-225
Author(s):  
V.S. Kuleshov

The results of a numerical modeling of thermo-gravitational convection of abnormally thermo-viscous fluid in a closed square cavity with two vertical adiabatic walls and two horizontal isothermal walls are presented. A model Newtonian liquid for which the dependence of viscosity on temperature is described by a bell function (Gaussian curve) is considered. The natural convection of inhomogeneous liquid is described by the closed mathematical model based on the continuous mechanics equations written in Oberbeck-Boussinesq approximation, where the fluid density is a linear function of temperature. To simulate the fluid flow dynamics, the modified computer code based on the implicit finite volume method and SIMPLE-type algorithm with the second-order temporal accuracy is realized using multiprocessor technology. The effect of the viscosity abnormality on stationary modes of convective flows are studied, the integral heat transfer coefficients in a flat cell are calculated.


1983 ◽  
Vol 78 (3) ◽  
pp. 443-462 ◽  
Author(s):  
K.-E. Süsse ◽  
D.-G. Welsch ◽  
I. Madzgalla

2014 ◽  
Vol 141 (21) ◽  
pp. 215101
Author(s):  
Norbert Orgován ◽  
Anna Rauscher ◽  
András Málnási-Csizmadia ◽  
Imre Derényi
Keyword(s):  

2014 ◽  
Vol 25 (03) ◽  
pp. 1350101
Author(s):  
Jianhua Lu ◽  
Sheng Li ◽  
Zhaoli Guo ◽  
Baochang Shi

In this paper, the 2D fluid flow pass a heated/cooled square cylinder exposed to a constant free-stream upward velocity is simulated via a multiple relaxation time (MRT) lattice-Boltzmann (LB) method. The buoyancy effect on the drag and lift coefficients as well as Nusselt number related is compared with the results in the existing literatures to validate the code used. The effect of temperature-viscosity dependence is then investigated to test whether the effect can be neglected or not for the mixed convection case. It is shown that the effect cannot be ignored when |Ri| > 0.15. Fortunately, the effect can be captured by using an effective temperature formula [J. M. Shi, D. Ferlach, M. Breuer, G. Biswas and F. Durst, Phys. Fluids16, 4331 (2004)] in a rather large range of Ri. All the numerical results, from another angle, also demonstrate that the MRT method is an efficient tool in simulating the problems such as the present one.


Sign in / Sign up

Export Citation Format

Share Document